Python tensorflow 模块,ConfigProto() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.ConfigProto()

项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def __init__(self, cluster, task, train_dir, log_device_placement=True):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed.
        None otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2)
    self.config = tf.ConfigProto(log_device_placement=log_device_placement,gpu_options=gpu_options)

    if self.is_master and self.task.index > 0:
      raise StandardError("%s: Only one replica of master expected",
                          task_as_string(self.task))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def __init__(self, cluster, task, train_dir, log_device_placement=True):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed.
        None otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu)
    self.config = tf.ConfigProto(log_device_placement=log_device_placement)

    if self.is_master and self.task.index > 0:
      raise StandardError("%s: Only one replica of master expected",
                          task_as_string(self.task))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def __init__(self, cluster, task, train_dir, log_device_placement=True):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed.
        None otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    self.config = tf.ConfigProto(log_device_placement=log_device_placement)

    if self.is_master and self.task.index > 0:
      raise StandardError("%s: Only one replica of master expected",
                          task_as_string(self.task))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def __init__(self, cluster, task, train_dir, log_device_placement=True):
        """"Creates a Trainer.

        Args:
          cluster: A tf.train.ClusterSpec if the execution is distributed.
            None otherwise.
          task: A TaskSpec describing the job type and the task index.
        """

        self.cluster = cluster
        self.task = task
        self.is_master = (task.type == "master" and task.index == 0)
        self.train_dir = train_dir
        self.config = tf.ConfigProto(log_device_placement=log_device_placement)

        if self.is_master and self.task.index > 0:
            raise StandardError("%s: Only one replica of master expected",
                                task_as_string(self.task))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def __init__(self, cluster, task, train_dir, log_device_placement=True):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed.
        None otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    self.config = tf.ConfigProto(log_device_placement=log_device_placement)

    if self.is_master and self.task.index > 0:
      raise StandardError("%s: Only one replica of master expected",
                          task_as_string(self.task))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def __init__(self, cluster, task, train_dir, log_device_placement=True):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed.
        None otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    self.config = tf.ConfigProto(log_device_placement=log_device_placement)

    if self.is_master and self.task.index > 0:
      raise StandardError("%s: Only one replica of master expected",
                          task_as_string(self.task))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def __init__(self, cluster, task, train_dir, log_device_placement=True):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed.
        None otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    self.config = tf.ConfigProto(log_device_placement=log_device_placement)

    if self.is_master and self.task.index > 0:
      raise StandardError("%s: Only one replica of master expected",
                          task_as_string(self.task))
项目:benchmarks    作者:tensorflow    | 项目源码 | 文件源码
def create_config_proto(params):
  """Returns session config proto.

  Args:
    params: Params tuple, typically created by make_params or
            make_params_from_flags.
  """
  config = tf.ConfigProto()
  config.allow_soft_placement = True
  config.intra_op_parallelism_threads = params.num_intra_threads
  config.inter_op_parallelism_threads = params.num_inter_threads
  config.gpu_options.force_gpu_compatible = params.force_gpu_compatible
  if params.gpu_memory_frac_for_testing > 0:
    config.gpu_options.per_process_gpu_memory_fraction = (
        params.gpu_memory_frac_for_testing)
  if params.xla:
    config.graph_options.optimizer_options.global_jit_level = (
        tf.OptimizerOptions.ON_1)
  if params.enable_layout_optimizer:
    config.graph_options.rewrite_options.layout_optimizer = (
        rewriter_config_pb2.RewriterConfig.ON)

  return config
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def configure_gpu_settings(gpu_cfg=None):
    session_conf = None
    if gpu_cfg:
        with open(gpu_cfg) as f:
            cfg = json.load(f)
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=cfg['per_process_gpu_memory_fraction'])
        session_conf = tf.ConfigProto(
            allow_soft_placement=cfg['allow_soft_placement'],
            log_device_placement=cfg['log_device_placement'],
            inter_op_parallelism_threads=cfg['inter_op_parallelism_threads'],
            intra_op_parallelism_threads=cfg['intra_op_parallelism_threads'],
            gpu_options=gpu_options)
        # Timeline
        # jit_level = 0
        # session_conf.graph_options.optimizer_options.global_jit_level = jit_level
    #     sess = tf.Session(
    #         config=session_conf)
    # else:
    #     sess = tf.Session()
    return session_conf
项目:HandDetection    作者:YunqiuXu    | 项目源码 | 文件源码
def train_net(network, imdb, roidb, valroidb, output_dir, tb_dir,
              pretrained_model=None,
              max_iters=40000):
  """Train a Faster R-CNN network."""
  roidb = filter_roidb(roidb)
  valroidb = filter_roidb(valroidb)

  tfconfig = tf.ConfigProto(allow_soft_placement=True)
  tfconfig.gpu_options.allow_growth = True

  with tf.Session(config=tfconfig) as sess:
    sw = SolverWrapper(sess, network, imdb, roidb, valroidb, output_dir, tb_dir,
                       pretrained_model=pretrained_model)
    print('Solving...')
    sw.train_model(sess, max_iters)
    print('done solving')
项目:tfutils    作者:neuroailab    | 项目源码 | 文件源码
def setUp(self):
        """Set up class before _each_ test method is executed.

        Creates a tensorflow session and instantiates a dbinterface.

        """
        self.setup_model()
        self.sess = tf.Session(
            config=tf.ConfigProto(
                allow_soft_placement=True,
                gpu_options=tf.GPUOptions(allow_growth=True),
                log_device_placement=self.params['log_device_placement'],
                inter_op_parallelism_threads=self.params['inter_op_parallelism_threads']))

        # TODO: Determine whether this should be called here or
        # in dbinterface.initialize()
        self.sess.run(tf.global_variables_initializer())

        self.dbinterface = base.DBInterface(sess=self.sess,
                                            params=self.params,
                                            cache_dir=self.CACHE_DIR,
                                            save_params=self.save_params,
                                            load_params=self.load_params)

        self.step = 0
项目:neural-fonts    作者:periannath    | 项目源码 | 文件源码
def main(_):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        model = UNet(args.experiment_dir, batch_size=args.batch_size, experiment_id=args.experiment_id,
                     input_width=args.image_size, output_width=args.image_size, embedding_num=args.embedding_num,
                     embedding_dim=args.embedding_dim, L1_penalty=args.L1_penalty, Lconst_penalty=args.Lconst_penalty,
                     Ltv_penalty=args.Ltv_penalty, Lcategory_penalty=args.Lcategory_penalty)
        model.register_session(sess)
        if args.flip_labels:
            model.build_model(is_training=True, inst_norm=args.inst_norm, no_target_source=True)
        else:
            model.build_model(is_training=True, inst_norm=args.inst_norm)
        fine_tune_list = None
        if args.fine_tune:
            ids = args.fine_tune.split(",")
            fine_tune_list = set([int(i) for i in ids])
        model.train(lr=args.lr, epoch=args.epoch, resume=args.resume,
                    schedule=args.schedule, freeze_encoder=args.freeze_encoder, fine_tune=fine_tune_list,
                    sample_steps=args.sample_steps, checkpoint_steps=args.checkpoint_steps,
                    flip_labels=args.flip_labels, no_val=args.no_val)
项目:PyMDNet    作者:HungWei-Andy    | 项目源码 | 文件源码
def tracking(dataset, seq, display, restore_path):
  train_data = reader.read_seq(dataset, seq)
  im_size = proc.load_image(train_data.data[seq].frames[0]).shape[:2]
  config = Config(im_size)

  # create session and saver
  gpu_config = tf.ConfigProto(allow_soft_placement=True)
  sess = tf.InteractiveSession(config=gpu_config)

  # load model, weights
  model = MDNet(config)
  model.build_generator(config.batch_size, reuse=False, dropout=True)
  tf.global_variables_initializer().run()

  # create saver
  saver = tf.train.Saver([v for v in tf.global_variables() if ('conv' in v.name or 'fc4' in v.name or 'fc5' in v.name) \
                          and 'lr_rate' not in v.name], max_to_keep=50)

  # restore from model
  saver.restore(sess, restore_path)

  # run mdnet
  mdnet_run(sess, model, train_data.data[seq].gts[0], train_data.data[seq].frames, config, display)
项目:tensorflow_seq2seq_chatbot    作者:higepon    | 项目源码 | 文件源码
def predict():
    # Only allocate part of the gpu memory when predicting.
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2)
    tf_config = tf.ConfigProto(gpu_options=gpu_options)

    with tf.Session(config=tf_config) as sess:

        predictor = EasyPredictor(sess)

        sys.stdout.write("> ")
        sys.stdout.flush()
        line = sys.stdin.readline()
        while line:
            replies = predictor.predict(line)
            for i, text in enumerate(replies):
                print(i, text)
            print("> ", end="")
            sys.stdout.flush()
            line = sys.stdin.readline()
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def run(self):
    """Build a graph and run the model on random input data."""
    _logger.info("Creating graph.")
    with tf.Graph().as_default():
      _logger.info("Building model.")
      self.build_model_loss()

      _logger.info("Starting session.")
      config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)
      with tf.Session(config=config) as sess:
        _logger.info("Initializing variables.")
        sess.run(tf.global_variables_initializer())
        _logger.info("Starting timing test.")
        self.evaluate(sess)

      _logger.info("Ending session.")
项目:GoogleCloudSetup    作者:tmulc18    | 项目源码 | 文件源码
def main():
    # Graph
    with tf.device('/cpu:0'):
        a = tf.Variable(tf.truncated_normal(shape=[2]),dtype=tf.float32)
        b = tf.Variable(tf.truncated_normal(shape=[2]),dtype=tf.float32)
        c=a+b

        target = tf.constant(100.,shape=[2],dtype=tf.float32)
        loss = tf.reduce_mean(tf.square(c-target))

        opt = tf.train.GradientDescentOptimizer(.0001).minimize(loss)

    # Session
    #sv = tf.train.Supervisor(logdir='/tmp/mydir')
    sv = tf.train.Supervisor(logdir='/tmp/mydir')
    gpu_options = tf.GPUOptions(allow_growth=True,allocator_type="BFC",visible_device_list="%d"%FLAGS.gpu_id)
    config = tf.ConfigProto(gpu_options=gpu_options,allow_soft_placement=False,device_count={'GPU':1},log_device_placement=True)
    sess = sv.prepare_or_wait_for_session(config=config)
    for i in range(1000):
        sess.run(opt)
        if i % 10 == 0:
            r = sess.run(c)
            print(r)
        time.sleep(.1)
项目:RFR-solution    作者:baoblackcoal    | 项目源码 | 文件源码
def main(_):
  gpu_options = tf.GPUOptions(
      per_process_gpu_memory_fraction=calc_gpu_fraction(FLAGS.gpu_fraction))

  with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
    config = get_config(FLAGS) or FLAGS

    if config.env_type == 'simple':
      env = SimpleGymEnvironment(config)
    else:
      env = GymEnvironment(config)

    if not tf.test.is_gpu_available() and FLAGS.use_gpu:
      raise Exception("use_gpu flag is true when no GPUs are available")

    if not FLAGS.use_gpu:
      config.cnn_format = 'NHWC'

    agent = Agent(config, env, sess)

    if FLAGS.is_train:
      agent.train()
    else:
      agent.play()
项目:tf-cnn-lstm-ocr-captcha    作者:Luonic    | 项目源码 | 文件源码
def evaluate():
    """Eval ocr for a number of steps."""
    with tf.Graph().as_default() as g:
        images, labels, seq_lengths = ocr.inputs()
        logits, timesteps = ocr.inference(images, FLAGS.eval_batch_size, train=True)
        ler = ocr.create_label_error_rate(logits, labels, timesteps)
        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        config = tf.ConfigProto(
            device_count={'GPU': 0}
        )
        sess = tf.Session(config=config)
        sess.run(init_op)

        saver = tf.train.Saver()

        summary_op = tf.summary.merge_all()
        summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

        while True:
            eval_once(saver, summary_writer, ler, summary_op)
            if FLAGS.run_once:
                break
            # print("Waiting for next evaluation for " + str(FLAGS.eval_interval_secs) + " sec")
            time.sleep(FLAGS.eval_interval_secs)
项目:3d-DenseNet    作者:frankgu    | 项目源码 | 文件源码
def _initialize_session(self):
    """Initialize session, variables, saver"""
    config = tf.ConfigProto()
    # restrict model GPU memory utilization to min required
    config.gpu_options.allow_growth = True
    self.sess = tf.Session(config=config)
    tf_ver = int(tf.__version__.split('.')[1])
    if TF_VERSION <= 0.10:
      self.sess.run(tf.initialize_all_variables())
      logswriter = tf.train.SummaryWriter
    else:
      self.sess.run(tf.global_variables_initializer())
      logswriter = tf.summary.FileWriter
    self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=0)
    self.summary_writer = logswriter(self.logs_path, self.sess.graph)

  # (Updated)
项目:blitznet    作者:dvornikita    | 项目源码 | 文件源码
def main(argv=None):  # pylint: disable=unused-argument
    assert args.detect or args.segment, "Either detect or segment should be True"
    assert args.ckpt > 0, "Specify the number of checkpoint"
    net = ResNet(config=net_config, depth=50, training=False)
    loader = Loader()


    with tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                          log_device_placement=False)) as sess:
        detector = Detector(sess, net, loader, net_config, no_gt=args.no_seg_gt,
                            folder=osp.join(loader.folder, 'output'))
        detector.restore_from_ckpt(args.ckpt)
        for name in loader.get_filenames():
            image = loader.load_image(name)
            h, w = image.shape[:2]
            print('Processing {}'.format(name + loader.data_format))
            detector.feed_forward(img=image, name=name, w=w, h=h, draw=True,
                                  seg_gt=None, gt_bboxes=None, gt_cats=None)
    print('Done')
项目:baselines    作者:openai    | 项目源码 | 文件源码
def train(env_id, num_timesteps, seed):
    env=gym.make(env_id)
    env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
    set_global_seeds(seed)
    env.seed(seed)
    gym.logger.setLevel(logging.WARN)

    with tf.Session(config=tf.ConfigProto()):
        ob_dim = env.observation_space.shape[0]
        ac_dim = env.action_space.shape[0]
        with tf.variable_scope("vf"):
            vf = NeuralNetValueFunction(ob_dim, ac_dim)
        with tf.variable_scope("pi"):
            policy = GaussianMlpPolicy(ob_dim, ac_dim)

        learn(env, policy=policy, vf=vf,
            gamma=0.99, lam=0.97, timesteps_per_batch=2500,
            desired_kl=0.002,
            num_timesteps=num_timesteps, animate=False)

        env.close()
项目:rl_algorithms    作者:DanielTakeshi    | 项目源码 | 文件源码
def get_session():
    tf.reset_default_graph()
    tf_config = tf.ConfigProto(
        inter_op_parallelism_threads=1,
        intra_op_parallelism_threads=1)

    # This was the default provided in the starter code.
    #session = tf.Session(config=tf_config)

    # Use this if I want to see what is on the GPU.
    #session = tf.Session(config=tf.ConfigProto(log_device_placement=True))

    # Use this for limiting memory allocated for the GPU.
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
    session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

    print("AVAILABLE GPUS: ", get_available_gpus())
    return session
项目:DocumentSegmentation    作者:SeguinBe    | 项目源码 | 文件源码
def process(input_dir, output_dir, model_dir, resizing_size, gpu):
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3, visible_device_list=gpu)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)).as_default():
        m = loader.LoadedModel(model_dir)

    os.makedirs(output_dir, exist_ok=True)

    input_filenames = glob(os.path.join(input_dir, '*.jpg')) + \
                      glob(os.path.join(input_dir, '*.png')) + \
                      glob(os.path.join(input_dir, '*.tif')) + \
                      glob(os.path.join(input_dir, '*.jp2'))

    for path in tqdm(input_filenames):
        img = Image.open(path).resize(resizing_size)
        mat = np.asarray(img)
        if len(mat.shape) == 2:
            mat = np.stack([mat, mat, mat], axis=2)
        predictions = m.predict(mat[None], prediction_key='labels')[0]
        plt.imsave(os.path.join(output_dir, os.path.relpath(path, input_dir)), predictions)
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def __init__(self, cluster, task, train_dir, log_device_placement=True):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed.
        None otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu)
    self.config = tf.ConfigProto(log_device_placement=log_device_placement)

    if self.is_master and self.task.index > 0:
      raise StandardError("%s: Only one replica of master expected",
                          task_as_string(self.task))
项目:neurobind    作者:Kyubyong    | 项目源码 | 文件源码
def validation_check():
    # Load graph
    g = Graph(is_training=False); print("Graph loaded")

    # Load data
    X, Y = load_data(mode="val")

    with g.graph.as_default():
        sv = tf.train.Supervisor()
        with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!")

            # Get model
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1]  # model name

            # Inference
            if not os.path.exists(hp.results): os.mkdir(hp.results)
            with open(os.path.join(hp.results, "validation_results.txt"), 'a') as fout:
                expected, predicted = [], []
                for step in range(len(X) // hp.batch_size):
                    x = X[step * hp.batch_size: (step + 1) * hp.batch_size]
                    y = Y[step * hp.batch_size: (step + 1) * hp.batch_size]

                    # predict intensities
                    logits = sess.run(g.logits, {g.x: x})

                    expected.extend(list(y))
                    predicted.extend(list(logits))

                # Get spearman coefficients
                score, _ = spearmanr(expected, predicted)
                fout.write("{}\t{}\n".format(mname, score))
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def __init__(self, checkpoint_file):

        checkpoint_dir = os.path.dirname(checkpoint_file)
        hparams_file = os.path.join(checkpoint_dir, "hparams.txt")
        hparams_dict = {}
        if os.path.isfile(hparams_file):
            with open(hparams_file) as f:
                hparams_dict = ast.literal_eval(f.read())
        self.hparams = TensorflowClassifierHparams(**hparams_dict)
        self.graph = tf.Graph()
        with self.graph.as_default():
            print("loading from file {}".format(checkpoint_file))
            config = tf.ConfigProto(
                device_count={'GPU': 0}, )
            config.gpu_options.visible_device_list = ""
            self.session = tf.Session(config=config)
            new_saver = tf.train.import_meta_graph(checkpoint_file + ".meta", clear_devices=True)
            new_saver.restore(self.session, checkpoint_file)

            self.features = {}

            if self.hparams.use_image:
                self.features["image"] = self.graph.get_tensor_by_name("image:0")
            if self.hparams.use_observation:
                self.features["observation"] = self.graph.get_tensor_by_name("observation:0")
            if self.hparams.use_action:
                self.features["action"] = self.graph.get_tensor_by_name("action:0")
            self.prediction = tf.get_collection('prediction')[0]
            self.loss = tf.get_collection('loss')[0]
            self.threshold = tf.get_collection('threshold')[0]
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def __init__(self, checkpoint_file):

        checkpoint_dir = os.path.dirname(checkpoint_file)
        hparams_file = os.path.join(checkpoint_dir, "hparams.txt")
        hparams_dict = {}
        if os.path.isfile(hparams_file):
            with open(hparams_file) as f:
                hparams_dict = ast.literal_eval(f.read())
        self.hparams = TensorflowClassifierHparams(**hparams_dict)
        self.graph = tf.Graph()
        with self.graph.as_default():
            print("loading from file {}".format(checkpoint_file))
            config = tf.ConfigProto(
                device_count={'GPU': 0}, )
            config.gpu_options.visible_device_list = ""
            self.session = tf.Session(config=config)
            new_saver = tf.train.import_meta_graph(checkpoint_file + ".meta", clear_devices=True)
            new_saver.restore(self.session, checkpoint_file)

            self.features = {}

            if self.hparams.use_image:
                self.features["image"] = self.graph.get_tensor_by_name("image:0")
            if self.hparams.use_observation:
                self.features["observation"] = self.graph.get_tensor_by_name("observation:0")
            if self.hparams.use_action:
                self.features["action"] = self.graph.get_tensor_by_name("action:0")
            self.prediction = tf.get_collection('prediction')[0]
            self.loss = tf.get_collection('loss')[0]
            self.threshold = tf.get_collection('threshold')[0]
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def __init__(self, checkpoint_file):

        checkpoint_dir = os.path.dirname(checkpoint_file)
        hparams_file = os.path.join(checkpoint_dir, "hparams.txt")
        hparams_dict = {}
        if os.path.isfile(hparams_file):
            with open(hparams_file) as f:
                hparams_dict = ast.literal_eval(f.read())
        self.hparams = TensorflowClassifierHparams(**hparams_dict)
        self.graph = tf.Graph()
        with self.graph.as_default():
            print("loading from file {}".format(checkpoint_file))
            config = tf.ConfigProto(
                device_count={'GPU': 0}, )
            config.gpu_options.visible_device_list = ""
            self.session = tf.Session(config=config)
            new_saver = tf.train.import_meta_graph(checkpoint_file + ".meta", clear_devices=True)
            new_saver.restore(self.session, checkpoint_file)

            self.features = {}

            if self.hparams.use_image:
                self.features["image"] = self.graph.get_tensor_by_name("image:0")
            if self.hparams.use_observation:
                self.features["observation"] = self.graph.get_tensor_by_name("observation:0")
            if self.hparams.use_action:
                self.features["action"] = self.graph.get_tensor_by_name("action:0")
            self.prediction = tf.get_collection('prediction')[0]
            self.loss = tf.get_collection('loss')[0]
            self.threshold = tf.get_collection('threshold')[0]
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def __init__(self, checkpoint_file):

        checkpoint_dir = os.path.dirname(checkpoint_file)
        hparams_file = os.path.join(checkpoint_dir, "hparams.txt")
        hparams_dict = {}
        if os.path.isfile(hparams_file):
            with open(hparams_file) as f:
                hparams_dict = ast.literal_eval(f.read())
        self.hparams = TensorflowClassifierHparams(**hparams_dict)
        self.graph = tf.Graph()
        with self.graph.as_default():
            print("loading from file {}".format(checkpoint_file))
            config = tf.ConfigProto(
                device_count={'GPU': 0}, )
            config.gpu_options.visible_device_list = ""
            self.session = tf.Session(config=config)
            new_saver = tf.train.import_meta_graph(checkpoint_file + ".meta", clear_devices=True)
            new_saver.restore(self.session, checkpoint_file)

            self.features = {}

            if self.hparams.use_image:
                self.features["image"] = self.graph.get_tensor_by_name("image:0")
            if self.hparams.use_observation:
                self.features["observation"] = self.graph.get_tensor_by_name("observation:0")
            if self.hparams.use_action:
                self.features["action"] = self.graph.get_tensor_by_name("action:0")
            self.prediction = tf.get_collection('prediction')[0]
            self.loss = tf.get_collection('loss')[0]
            self.threshold = tf.get_collection('threshold')[0]
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def single_threaded_session():
    tf_config = tf.ConfigProto(
        inter_op_parallelism_threads=1,
        intra_op_parallelism_threads=1)
    return tf.Session(config=tf_config)
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def make_session(num_cpu):
    tf_config = tf.ConfigProto(
        inter_op_parallelism_threads=num_cpu,
        intra_op_parallelism_threads=num_cpu)
    return tf.Session(config=tf_config)
项目:wiki-album-genre    作者:aliostad    | 项目源码 | 文件源码
def get_genre(album_or_phrase):

  try:

    with graph.as_default():

      session_conf = tf.ConfigProto(
          allow_soft_placement=FLAGS.allow_soft_placement,
          log_device_placement=FLAGS.log_device_placement)
      sess = tf.Session(config=session_conf)
      with sess.as_default():
        # Load the saved meta graph and restore variables
        saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
        saver.restore(sess, checkpoint_file)

        x_raw = [album_or_phrase]
        all_predictions = []
        x_test = np.array(list(vocab_processor.transform(x_raw)))

        # Get the placeholders from the graph by name
        input_x = graph.get_operation_by_name("input_x").outputs[0]
        dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]

        # Tensors we want to evaluate
        predictions = graph.get_operation_by_name("output/predictions").outputs[0]

        # Generate batches for one epoch
        batches = data_loader.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False)

        for x_test_batch in batches:
            batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0})
            all_predictions = np.concatenate([all_predictions, batch_predictions])

        return data_loader.genre_ids[int(all_predictions[0])]

  except Exception as e:
    print e
项目:wiki-album-genre    作者:aliostad    | 项目源码 | 文件源码
def get_genre():

  try:

    with graph.as_default():

      session_conf = tf.ConfigProto(
          allow_soft_placement=FLAGS.allow_soft_placement,
          log_device_placement=FLAGS.log_device_placement)
      sess = tf.Session(config=session_conf)
      with sess.as_default():
        # Load the saved meta graph and restore variables
        saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
        saver.restore(sess, checkpoint_file)

        albums = request.args.get('albums')
        x_raw = albums.split(',')
        all_predictions = []
        x_test = np.array(list(vocab_processor.transform(x_raw)))

        # Get the placeholders from the graph by name
        input_x = graph.get_operation_by_name("input_x").outputs[0]
        dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]

        # Tensors we want to evaluate
        predictions = graph.get_operation_by_name("output/predictions").outputs[0]

        # Generate batches for one epoch
        batches = data_loader.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False)

        for x_test_batch in batches:
            batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0})
            all_predictions = np.concatenate([all_predictions, batch_predictions])

        return jsonify({'results': map(lambda x: data_loader.genre_ids[int(x)], all_predictions)})

  except Exception as e:
    print e
项目:pointnet    作者:charlesq34    | 项目源码 | 文件源码
def evaluate(num_votes):
    is_training = False

    with tf.device('/gpu:'+str(GPU_INDEX)):
        pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
        is_training_pl = tf.placeholder(tf.bool, shape=())

        # simple model
        pred, end_points = MODEL.get_model(pointclouds_pl, is_training_pl)
        loss = MODEL.get_loss(pred, labels_pl, end_points)

        # Add ops to save and restore all the variables.
        saver = tf.train.Saver()

    # Create a session
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    config.log_device_placement = True
    sess = tf.Session(config=config)

    # Restore variables from disk.
    saver.restore(sess, MODEL_PATH)
    log_string("Model restored.")

    ops = {'pointclouds_pl': pointclouds_pl,
           'labels_pl': labels_pl,
           'is_training_pl': is_training_pl,
           'pred': pred,
           'loss': loss}

    eval_one_epoch(sess, ops, num_votes)
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def main():
    if args.logdir is None:
        raise ValueError('Please specify the logdir file')

    ckpt = get_checkpoint(args.logdir)

    if ckpt is None:
        raise ValueError('No checkpoints in {}'.format(args.logdir))

    with open(os.path.join(args.logdir, 'architecture.json')) as f:
        arch = json.load(f)

    reader = VCC2016TFRManager()
    features = reader.read_whole(args.file_pattern, num_epochs=1)
    x = features['frame']
    y = features['label']
    filename = features['filename']
    y_conv = y * 0 + args.target_id

    net = MLPcVAE(arch=arch, is_training=False)
    z = net.encode(x)
    xh = net.decode(z, y)
    x_conv = net.decode(z, y_conv)

    pre_train_saver = tf.train.Saver()
    def load_pretrain(sess):
        pre_train_saver.restore(sess, ckpt)
    sv = tf.train.Supervisor(init_fn=load_pretrain)
    gpu_options = tf.GPUOptions(allow_growth=True)
    sess_config = tf.ConfigProto(
        allow_soft_placement=True,
        gpu_options=gpu_options)
    with sv.managed_session(config=sess_config) as sess:
        for _ in range(reader.n_files):
            if sv.should_stop():
                break
            fetch_dict = {'x': x, 'xh': xh, 'x_conv': x_conv, 'f': filename}
            results = sess.run(fetch_dict)
            plot_spectra(results)
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def train(self, nIter, machine=None, summary_op=None):
        # Xh = self._validate(machine=machine, n=10)

        run_metadata = tf.RunMetadata()

        sv = tf.train.Supervisor(
            logdir=self.dirs['logdir'],
            # summary_writer=summary_writer,
            # summary_op=None,
            # is_chief=True,
            save_model_secs=300,
            global_step=self.opt['global_step'])


        # sess_config = configure_gpu_settings(args.gpu_cfg)
        sess_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True))

        with sv.managed_session(config=sess_config) as sess:
            sv.loop(60, self._refresh_status, (sess,))
            for step in range(self.arch['training']['max_iter']):
                if sv.should_stop():
                    break

                # main loop
                sess.run(self.opt['g'])

                # # output img
                # if step % 1000 == 0:
                #     xh = sess.run(Xh)
                #     with tf.gfile.GFile(
                #         os.path.join(
                #             self.dirs['logdir'],
                #             'img-anime-{:03d}k.png'.format(step // 1000),
                #         ),
                #         mode='wb',
                #     ) as fp:
                #         fp.write(xh)
项目:cxflow-tensorflow    作者:Cognexa    | 项目源码 | 文件源码
def _create_session(self, session_config: Optional[dict]) -> tf.Session:
        """
        Create and return TF Session for this model.

        By default the session is configured with ``tf.ConfigProto`` created with
        the given ``session_config`` as ``**kwargs``. Nested dictionaries such as
        ``gpu_options`` or ``graph_options`` are handled automatically.

        :param session_config: session configuration dict as specified in the config yaml
        :return: TensorFlow session
        """
        if session_config:
            session_config = tf.ConfigProto(**session_config)
        return tf.Session(graph=self._graph, config=session_config)
项目:a-nice-mc    作者:ermongroup    | 项目源码 | 文件源码
def __init__(self, energy_fn, prior, std=1.0,
                 inter_op_parallelism_threads=1, intra_op_parallelism_threads=1):
        self.energy_fn = energy_fn
        self.prior = prior
        self.z = self.energy_fn.z

        def fn(z, x):
            z_ = z + tf.random_normal(tf.shape(self.z), 0.0, std)
            accept = metropolis_hastings_accept(
                energy_prev=energy_fn(z),
                energy_next=energy_fn(z_)
            )
            return tf.where(accept, z_, z)

        self.steps = tf.placeholder(tf.int32, [])
        elems = tf.zeros([self.steps])
        self.z_ = tf.scan(
            fn, elems, self.z, back_prop=False
        )

        self.sess = tf.Session(
            config=tf.ConfigProto(
                inter_op_parallelism_threads=inter_op_parallelism_threads,
                intra_op_parallelism_threads=intra_op_parallelism_threads
            )
        )
        self.sess.run(tf.global_variables_initializer())
项目:VAE-MF-TensorFlow    作者:arongdari    | 项目源码 | 文件源码
def train_test_validation():
    M = read_dataset()

    num_rating = np.count_nonzero(M)
    idx = np.arange(num_rating)
    np.random.seed(1)
    np.random.shuffle(idx)

    train_idx = idx[:int(0.85 * num_rating)]
    valid_idx = idx[int(0.85 * num_rating):int(0.90 * num_rating)]
    test_idx = idx[int(0.90 * num_rating):]

    for hidden_encoder_dim, hidden_decoder_dim, latent_dim, learning_rate, batch_size, reg_param, vae in itertools.product(hedims, hddims, ldims, lrates, bsizes, regs, vaes):
        result_path = "{0}_{1}_{2}_{3}_{4}_{5}_{6}".format(
            hidden_encoder_dim, hidden_decoder_dim, latent_dim, learning_rate, batch_size, reg_param, vae)
        if not os.path.exists(result_path + "/model.ckpt.index"):
            config = tf.ConfigProto()
            config.gpu_options.allow_growth=True
            with tf.Session(config=config) as sess:
                model = VAEMF(sess, num_user, num_item,
                              hidden_encoder_dim=hidden_encoder_dim, hidden_decoder_dim=hidden_decoder_dim,
                              latent_dim=latent_dim, learning_rate=learning_rate, batch_size=batch_size, reg_param=reg_param, vae=vae)
                print("Train size={0}, Validation size={1}, Test size={2}".format(
                    train_idx.size, valid_idx.size, test_idx.size))
                print(result_path)
                best_rmse = model.train_test_validation(M, train_idx=train_idx, test_idx=test_idx, valid_idx=valid_idx, n_steps=n_steps, result_path=result_path)

                print("Best MSE = {0}".format(best_rmse))

                with open('result.csv', 'a') as f:
                    f.write("{0},{1},{2},{3},{4},{5},{6},{7}\n".format(hidden_encoder_dim, hidden_decoder_dim,
                                                                               latent_dim, learning_rate, batch_size, reg_param, vae, best_rmse))

        tf.reset_default_graph()
项目:hdrnet_legacy    作者:mgharbi    | 项目源码 | 文件源码
def __init__(self, fnames, shuffle=True, num_epochs=None):
    """Init from a list of filenames to enqueue.

    Args:
      fnames: list of .tfrecords filenames to enqueue.
      shuffle: if true, shuffle the list at each epoch
    """
    self._fnames = fnames
    self._fname_queue = tf.train.string_input_producer(
        self._fnames,
        capacity=1000,
        shuffle=shuffle,
        num_epochs=num_epochs,
        shared_name='input_files')
    self._reader = tf.TFRecordReader()

    # Read first record to initialize the shape parameters
    with tf.Graph().as_default():
      fname_queue = tf.train.string_input_producer(self._fnames)
      reader = tf.TFRecordReader()
      _, serialized = reader.read(fname_queue)
      shapes = self._parse_shape(serialized)
      dtypes = self._parse_dtype(serialized)

      config = tf.ConfigProto()
      config.gpu_options.allow_growth = True

      with tf.Session(config=config) as sess:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        self.shapes = sess.run(shapes)
        self.shapes = {k: self.shapes[k+'_sz'].tolist() for k in self.FEATURES}

        self.dtypes = sess.run(dtypes)
        self.dtypes = {k: REVERSE_TYPEMAP[self.dtypes[k+'_dtype'][0]] for k in self.FEATURES}

        coord.request_stop()
        coord.join(threads)
项目:scientific-paper-summarisation    作者:EdCo95    | 项目源码 | 文件源码
def main():

    # Create the TensorFlow placeholders
    placeholders = create_placeholders()

    # Get the training feed dicts and define the length of the test set.
    train_feed_dicts, vocab = load_data(placeholders)
    num_test = int(len(train_feed_dicts) * (1 / 5))

    print("Number of Feed Dicts: ", len(train_feed_dicts))
    print("Number of Test Dicts: ", num_test)

    # Slice the dictionary list into training and test sets
    final_test_feed_dicts = train_feed_dicts[0:num_test]
    test_feed_dicts = train_feed_dicts[0:50]
    train_feed_dicts = train_feed_dicts[num_test:]

    # Do not take up all the GPU memory, all the time.
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.allow_growth = True

    with tf.Session(config=sess_config) as sess:

        logits, loss, preds, accuracy, saver = train(placeholders, train_feed_dicts, test_feed_dicts, vocab, sess=sess)
        print('============')

        # Test on train data - later, test on test data
        avg_acc = 0
        count = 0
        for j, batch in enumerate(final_test_feed_dicts):
            acc = sess.run(accuracy, feed_dict=batch)
            print("Accuracy on test set is: ", acc)
            avg_acc += acc
            count += 1
            print('-----')

        print("Overall Average Accuracy on the Test Set Is: ", avg_acc / count)
项目:deligan    作者:val-iisc    | 项目源码 | 文件源码
def serialize_cifar_pool3(X,filename):
    print 'About to generate file: %s' % filename
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.1)
    sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options))
    X_pool3 = batch_pool3_features(sess,X)
    np.save(filename,X_pool3)
项目:deep-q-learning    作者:alvinwan    | 项目源码 | 文件源码
def get_session():
    tf.reset_default_graph()
    tf_config = tf.ConfigProto(
        inter_op_parallelism_threads=1,
        intra_op_parallelism_threads=1)
    session = tf.Session(config=tf_config)
    print("AVAILABLE GPUS: ", get_available_gpus())
    return session
项目:deep-q-learning    作者:alvinwan    | 项目源码 | 文件源码
def get_session():
    tf.reset_default_graph()
    tf_config = tf.ConfigProto(
        inter_op_parallelism_threads=1,
        intra_op_parallelism_threads=1)
    session = tf.Session(config=tf_config)
    print("AVAILABLE GPUS: ", get_available_gpus())
    return session
项目:SnapStitch    作者:avikj    | 项目源码 | 文件源码
def compute_embeddings(images):
  """Runs inference on an image.

  Args:
    image: Image file names.

  Returns:
    Dict mapping image file name to embedding.
  """

  # Creates graph from saved GraphDef.
  create_graph()
  filename_to_emb = {}
  config = tf.ConfigProto(device_count = {'GPU': 0})
  bar = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()])
  with tf.Session(config=config) as sess:
    i = 0
    for image in bar(images):
      if not tf.gfile.Exists(image):
        tf.logging.fatal('File does not exist %s', image) 
      image_data = tf.gfile.FastGFile(image, 'rb').read()
      # Some useful tensors:
      # 'softmax:0': A tensor containing the normalized prediction across
      #   1000 labels.
      # 'pool_3:0': A tensor containing the next-to-last layer containing 2048
      #   float description of the image.
      # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG
      #   encoding of the image.
      # Runs the softmax tensor by feeding the image_data as input to the graph.
      softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
      embedding_tensor = sess.graph.get_tensor_by_name('pool_3:0')
      embedding = sess.run(embedding_tensor,
                             {'DecodeJpeg/contents:0': image_data})
      filename_to_emb[image] = embedding.reshape(2048)
      i += 1
      # print(image, i, len(images))
  return filename_to_emb

# temp_dir is a subdir of temp
项目:neural-fonts    作者:periannath    | 项目源码 | 文件源码
def main(_):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        model = UNet(batch_size=args.batch_size)
        model.register_session(sess)
        model.build_model(is_training=False, inst_norm=args.inst_norm)
        model.export_generator(save_dir=args.save_dir, model_dir=args.model_dir)
项目:neural-fonts    作者:periannath    | 项目源码 | 文件源码
def main(_):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    with tf.Session(config=config) as sess:
        model = UNet(batch_size=args.batch_size)
        model.register_session(sess)
        model.build_model(is_training=False, inst_norm=args.inst_norm)
        embedding_ids = [int(i) for i in args.embedding_ids.split(",")]
        if not args.interpolate:
            if len(embedding_ids) == 1:
                embedding_ids = embedding_ids[0]
            if args.compare:
                model.infer_compare(model_dir=args.model_dir, source_obj=args.source_obj, embedding_ids=embedding_ids,
                        save_dir=args.save_dir, show_ssim=args.show_ssim)
            else:
                model.infer(model_dir=args.model_dir, source_obj=args.source_obj, embedding_ids=embedding_ids,
                        save_dir=args.save_dir, progress_file=args.progress_file)
        else:
            if len(embedding_ids) < 2:
                raise Exception("no need to interpolate yourself unless you are a narcissist")
            chains = embedding_ids[:]
            if args.uroboros:
                chains.append(chains[0])
            pairs = list()
            for i in range(len(chains) - 1):
                pairs.append((chains[i], chains[i + 1]))
            for s, e in pairs:
                model.interpolate(model_dir=args.model_dir, source_obj=args.source_obj, between=[s, e],
                                  save_dir=args.save_dir, steps=args.steps)
            if args.output_gif:
                gif_path = os.path.join(args.save_dir, args.output_gif)
                compile_frames_to_gif(args.save_dir, gif_path)
                print("gif saved at %s" % gif_path)
项目:speechless    作者:JuliusKunze    | 项目源码 | 文件源码
def restrict_gpu_memory(per_process_gpu_memory_fraction: float = 0.9):
    import os
    import tensorflow as tf
    import keras
    thread_count = os.environ.get('OMP_NUM_THREADS')
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=per_process_gpu_memory_fraction)
    config = tf.ConfigProto(gpu_options=gpu_options,
                            allow_soft_placement=True,
                            intra_op_parallelism_threads=thread_count) \
        if thread_count else tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)
    keras.backend.tensorflow_backend.set_session(tf.Session(config=config))
项目:photinia    作者:XoriieInpottn    | 项目源码 | 文件源码
def main(flags):
    # ???????
    ds = mnist.Data(flags.directory)
    # tensorflow ??
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    # ??session
    with tf.Session(config=config) as session:
        # ??????
        model = Model('Model',
                      session,
                      flags.height,
                      flags.width,
                      flags.depth,
                      flags.feature_size,
                      flags.num_classes).build()
        # ??slot
        train = model.get_slot('train')
        predict = model.get_slot('predict')
        # ?????
        session.run(tf.global_variables_initializer())
        # ????
        for i in range(1, flags.nloop + 1):
            # ????batch???
            images_batch, labels_batch = ds.next_batch(flags.bsize)
            loss, train_accuracy = train(images_batch, labels_batch, 0.5)
            # ?100?????????????batch??accuracy
            if i % 100 == 0:
                print('Loop {}:\tloss={}\ttrain accuracy={}'.format(i, loss, train_accuracy))
        # ????????accuracy
        accuracy = predict(ds.test_images, ds.test_labels, 1.0)
        print('Accuracy on test set: {}'.format(accuracy))
    return 0
项目:photinia    作者:XoriieInpottn    | 项目源码 | 文件源码
def main(flags):
    # ???????
    ds = DataSource(flags.directory)
    # tensorflow ??
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    # ??session
    with tf.Session(config=config) as session:
        # ??????
        model = Model('Model', session, flags.input_size, flags.num_classes).build()
        # ??slot
        train = model.get_slot('train')
        predict = model.get_slot('predict')
        # ?????
        session.run(tf.global_variables_initializer())
        # ????
        for i in range(1, flags.nloop + 1):
            # ????batch???
            images_batch, labels_batch = ds.next_batch(flags.bsize)
            # ?????????
            loss = train(images_batch, labels_batch)
            print('Loop {}:\tloss= {}'.format(i, loss))
        # ????????accuracy
        accuracy = predict(ds.test_images, ds.test_labels)
        print('Accuracy on test set: {}'.format(accuracy))
    return 0