Python tensorflow 模块,expand_dims() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.expand_dims()

项目:Tensormodels    作者:asheshjain399    | 项目源码 | 文件源码
def one_hot_encoding(labels, num_classes, scope=None):
  """Transform numeric labels into onehot_labels.

  Args:
    labels: [batch_size] target labels.
    num_classes: total number of classes.
    scope: Optional scope for op_scope.
  Returns:
    one hot encoding of the labels.
  """
  with tf.op_scope([labels], scope, 'OneHotEncoding'):
    batch_size = labels.get_shape()[0]
    indices = tf.expand_dims(tf.range(0, batch_size), 1)
    labels = tf.cast(tf.expand_dims(labels, 1), indices.dtype)
    concated = tf.concat(1, [indices, labels])
    onehot_labels = tf.sparse_to_dense(
        concated, tf.pack([batch_size, num_classes]), 1.0, 0.0)
    onehot_labels.set_shape([batch_size, num_classes])
    return onehot_labels
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def SampleRandomFrames(model_input, num_frames, num_samples):
  """Samples a random set of frames of size num_samples.

  Args:
    model_input: A tensor of size batch_size x max_frames x feature_size
    num_frames: A tensor of size batch_size x 1
    num_samples: A scalar

  Returns:
    `model_input`: A tensor of size batch_size x num_samples x feature_size
  """
  batch_size = tf.shape(model_input)[0]
  frame_index = tf.cast(
      tf.multiply(
          tf.random_uniform([batch_size, num_samples]),
          tf.tile(tf.cast(num_frames, tf.float32), [1, num_samples])), tf.int32)
  batch_index = tf.tile(
      tf.expand_dims(tf.range(batch_size), 1), [1, num_samples])
  index = tf.stack([batch_index, frame_index], 2)
  return tf.gather_nd(model_input, index)
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def model(self, features, labels):
        x = features["observation"]
        x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu)
        x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu)
        actions = tf.one_hot(tf.reshape(features["action"],[-1]), depth=6, on_value=1.0, off_value=0.0, axis=1)
        x = tf.concat(1, [tf.contrib.layers.flatten(x),  actions])
        x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu)
        x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu)
        logits = tf.contrib.layers.fully_connected(x, 1, activation_fn=None)
        prediction = tf.sigmoid(logits, name="prediction")
        loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits, tf.expand_dims(labels, axis=1)),name="loss")
        train_op = tf.contrib.layers.optimize_loss(
          loss, tf.contrib.framework.get_global_step(), optimizer='Adam',
          learning_rate=self.learning_rate)
        tf.add_to_collection('prediction', prediction)
        tf.add_to_collection('loss', loss)
        return prediction, loss, train_op
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def parse_example(serialized_example):
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'shape': tf.FixedLenFeature([], tf.string),
            'img_raw': tf.FixedLenFeature([], tf.string),
            'gt_raw': tf.FixedLenFeature([], tf.string),
            'example_name': tf.FixedLenFeature([], tf.string)
        })

    with tf.variable_scope('decoder'):
        shape = tf.decode_raw(features['shape'], tf.int32)
        image = tf.decode_raw(features['img_raw'], tf.float32)
        ground_truth = tf.decode_raw(features['gt_raw'], tf.uint8)
        example_name = features['example_name']

    with tf.variable_scope('image'):
        # reshape and add 0 dimension (would be batch dimension)
        image = tf.expand_dims(tf.reshape(image, shape), 0)
    with tf.variable_scope('ground_truth'):
        # reshape
        ground_truth = tf.cast(tf.reshape(ground_truth, shape[:-1]), tf.float32)
    return image, ground_truth, example_name
项目:identifiera-sarkasm    作者:risnejunior    | 项目源码 | 文件源码
def convolve_me(self, hyp, pd):
        network = input_data(shape=[None, pd.max_sequence], name='input')
        network = tflearn.embedding(network,
                                    input_dim=pd.vocab_size,
                                    output_dim=pd.emb_size,
                                    name="embedding")
        branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
        branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
        branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
        network = merge([branch1, branch2, branch3], mode='concat', axis=1)
        network = tf.expand_dims(network, 2)
        network = global_max_pool(network)
        network = dropout(network, 0.5)
        network = fully_connected(network, 2, activation='softmax')
        network = regression(network, optimizer='adam', learning_rate=0.001,
                             loss='categorical_crossentropy', name='target')
        return network
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def decode(self, cell_dec, enc_final_state, output_size, output_embed_matrix, training, grammar_helper=None):
        if self.config.use_dot_product_output:
            output_layer = DotProductLayer(output_embed_matrix)
        else:
            output_layer = tf.layers.Dense(output_size, use_bias=False)

        go_vector = tf.ones((self.batch_size,), dtype=tf.int32) * self.config.grammar.start
        if training:
            output_ids_with_go = tf.concat([tf.expand_dims(go_vector, axis=1), self.output_placeholder], axis=1)
            outputs = tf.nn.embedding_lookup([output_embed_matrix], output_ids_with_go)
            helper = TrainingHelper(outputs, self.output_length_placeholder+1)
        else:
            helper = GreedyEmbeddingHelper(output_embed_matrix, go_vector, self.config.grammar.end)

        if self.config.use_grammar_constraints:
            decoder = GrammarBasicDecoder(self.config.grammar, cell_dec, helper, enc_final_state, output_layer=output_layer, training_output = self.output_placeholder if training else None,
                                          grammar_helper=grammar_helper)
        else:
            decoder = BasicDecoder(cell_dec, helper, enc_final_state, output_layer=output_layer)

        final_outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True, maximum_iterations=self.max_length)

        return final_outputs
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def bag_of_tokens(config, labels, label_lengths):
    if config.train_output_embeddings:
        with tf.variable_scope('embed', reuse=True):
            output_embeddings = tf.get_variable('output_embedding')
    else:
        output_embeddings = tf.constant(config.output_embedding_matrix)

    #everything_label_placeholder = tf.placeholder(shape=(None, config.max_length,), dtype=tf.int32)
    #everything_label_length_placeholder = tf.placeholder(shape=(None,), dtype=tf.int32)

    labels = tf.constant(np.array(labels))
    embedded_output = tf.gather(output_embeddings, labels)
    print('embedded_output before', embedded_output)
    #mask = tf.sequence_mask(label_lengths, maxlen=config.max_length, dtype=tf.float32)
    # note: this multiplication will broadcast the mask along all elements of the depth dimension
    # (which is why we run the expand_dims to choose how to broadcast)
    #embedded_output = embedded_output * tf.expand_dims(mask, axis=2)
    #print('embedded_output after', embedded_output)

    return tf.reduce_sum(embedded_output, axis=1)
项目:variational-text-tensorflow    作者:carpedm20    | 项目源码 | 文件源码
def build_encoder(self):
    """Inference Network. q(h|X)"""
    with tf.variable_scope("encoder"):
      q_cell = tf.nn.rnn_cell.LSTMCell(self.embed_dim, self.vocab_size)
      a_cell = tf.nn.rnn_cell.LSTMCell(self.embed_dim, self.vocab_size)

      l1 = tf.nn.relu(tf.nn.rnn_cell.linear(tf.expand_dims(self.x, 0), self.embed_dim, bias=True, scope="l1"))
      l2 = tf.nn.relu(tf.nn.rnn_cell.linear(l1, self.embed_dim, bias=True, scope="l2"))

      self.mu = tf.nn.rnn_cell.linear(l2, self.h_dim, bias=True, scope="mu")
      self.log_sigma_sq = tf.nn.rnn_cell.linear(l2, self.h_dim, bias=True, scope="log_sigma_sq")

      eps = tf.random_normal((1, self.h_dim), 0, 1, dtype=tf.float32)
      sigma = tf.sqrt(tf.exp(self.log_sigma_sq))

      _ = tf.histogram_summary("mu", self.mu)
      _ = tf.histogram_summary("sigma", sigma)

      self.h = self.mu + sigma * eps
项目:variational-text-tensorflow    作者:carpedm20    | 项目源码 | 文件源码
def build_encoder(self):
    """Inference Network. q(h|X)"""
    with tf.variable_scope("encoder"):
      self.l1_lin = linear(tf.expand_dims(self.x, 0), self.embed_dim, bias=True, scope="l1")
      self.l1 = tf.nn.relu(self.l1_lin)

      self.l2_lin = linear(self.l1, self.embed_dim, bias=True, scope="l2")
      self.l2 = tf.nn.relu(self.l2_lin)

      self.mu = linear(self.l2, self.h_dim, bias=True, scope="mu")
      self.log_sigma_sq = linear(self.l2, self.h_dim, bias=True, scope="log_sigma_sq")

      self.eps = tf.random_normal((1, self.h_dim), 0, 1, dtype=tf.float32)
      self.sigma = tf.sqrt(tf.exp(self.log_sigma_sq))

      self.h = tf.add(self.mu, tf.mul(self.sigma, self.eps))

      _ = tf.histogram_summary("mu", self.mu)
      _ = tf.histogram_summary("sigma", self.sigma)
      _ = tf.histogram_summary("h", self.h)
      _ = tf.histogram_summary("mu + sigma", self.mu + self.sigma)
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def create_model(self, model_input, vocab_size, num_frames, l2_penalty=1e-8, **unused_params):
    """
    A super model that combine one or more models
    """
    models = FLAGS.wide_and_deep_models
    outputs = []
    for model_name in map(lambda x: x.strip(), models.split(",")):
      model = getattr(frame_level_models, model_name, None)()
      output = model.create_model(model_input, vocab_size, num_frames, l2_penalty=l2_penalty, **unused_params)["predictions"]
      outputs.append(tf.expand_dims(output, axis=2))
    num_models = len(outputs)
    model_outputs = tf.concat(outputs, axis=2)
#    linear_combination = tf.get_variable("combine", shape=[vocab_size,num_models],
#        dtype=tf.float32, initializer=tf.zeros_initializer(),
#        regularizer=slim.l2_regularizer(l2_penalty))
#    combination = tf.nn.softmax(linear_combination)
    combination = tf.fill(dims=[vocab_size,num_models], value=1.0/num_models)
    output_sum = tf.einsum("ijk,jk->ij", model_outputs, combination)
    return {"predictions": output_sum}
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def SampleRandomFrames(model_input, num_frames, num_samples):
  """Samples a random set of frames of size num_samples.

  Args:
    model_input: A tensor of size batch_size x max_frames x feature_size
    num_frames: A tensor of size batch_size x 1
    num_samples: A scalar

  Returns:
    `model_input`: A tensor of size batch_size x num_samples x feature_size
  """
  batch_size = tf.shape(model_input)[0]
  frame_index = tf.cast(
      tf.multiply(
          tf.random_uniform([batch_size, num_samples]),
          tf.tile(tf.cast(num_frames, tf.float32), [1, num_samples])), tf.int32)
  batch_index = tf.tile(
      tf.expand_dims(tf.range(batch_size), 1), [1, num_samples])
  index = tf.stack([batch_index, frame_index], 2)
  return tf.gather_nd(model_input, index)
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def SampleRandomFrames(model_input, num_frames, num_samples):
  """Samples a random set of frames of size num_samples.

  Args:
    model_input: A tensor of size batch_size x max_frames x feature_size
    num_frames: A tensor of size batch_size x 1
    num_samples: A scalar

  Returns:
    `model_input`: A tensor of size batch_size x num_samples x feature_size
  """
  batch_size = tf.shape(model_input)[0]
  frame_index = tf.cast(
      tf.multiply(
          tf.random_uniform([batch_size, num_samples]),
          tf.tile(tf.cast(num_frames, tf.float32), [1, num_samples])), tf.int32)
  batch_index = tf.tile(
      tf.expand_dims(tf.range(batch_size), 1), [1, num_samples])
  index = tf.stack([batch_index, frame_index], 2)
  return tf.gather_nd(model_input, index)
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def __init__(self, ob_space, ac_space, size=256, **kwargs):
        self.x = x = tf.placeholder(tf.float32, [None] + list(ob_space))

        for i in range(4):
            x = tf.nn.elu(conv2d(x, 32, "l{}".format(i + 1), [3, 3], [2, 2]))
        # introduce a "fake" batch dimension of 1 after flatten so that we can do GRU over time dim
        x = tf.expand_dims(flatten(x), 1)

        gru = rnn.GRUCell(size)

        h_init = np.zeros((1, size), np.float32)
        self.state_init = [h_init]
        h_in = tf.placeholder(tf.float32, [1, size])
        self.state_in = [h_in]

        gru_outputs, gru_state = tf.nn.dynamic_rnn(
            gru, x, initial_state=h_in, sequence_length=[size], time_major=True)
        x = tf.reshape(gru_outputs, [-1, size])
        self.logits = linear(x, ac_space, "action", normalized_columns_initializer(0.01))
        self.vf = tf.reshape(linear(x, 1, "value", normalized_columns_initializer(1.0)), [-1])
        self.state_out = [gru_state[:1]]
        self.sample = categorical_sample(self.logits, ac_space)[0, :]
        self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def model(self, features, labels):
        x = features["observation"]
        x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu)
        x = tf.contrib.layers.convolution2d(x, 2, kernel_size=[3, 3], stride=[2, 2], activation_fn=tf.nn.elu)
        x = tf.contrib.layers.flatten(x)
        x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu)
        x = tf.contrib.layers.fully_connected(x, 100, activation_fn=tf.nn.elu)
        logits = tf.contrib.layers.fully_connected(x, 1, activation_fn=None)
        prediction = tf.sigmoid(logits)
        loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits, tf.expand_dims(labels, axis=1)))
        train_op = tf.contrib.layers.optimize_loss(
          loss, tf.contrib.framework.get_global_step(), optimizer='Adam',
          learning_rate=0.01)
        tf.add_to_collection('prediction', prediction)
        tf.add_to_collection('loss', loss)
        return prediction, loss, train_op
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def lengths_to_mask(lengths_b, max_length):
    """
    Turns a vector of lengths into a boolean mask

    Args:
        lengths_b: an integer vector of lengths
        max_length: maximum length to fill the mask

    Returns:
        a boolean array of shape (batch_size, max_length)
        row[i] consists of True repeated lengths_b[i] times, followed by False
    """
    lengths_b = tf.convert_to_tensor(lengths_b)
    assert lengths_b.get_shape().ndims == 1
    mask_bt = tf.expand_dims(tf.range(max_length), 0) < tf.expand_dims(lengths_b, 1)
    return mask_bt
项目:benchmarks    作者:tensorflow    | 项目源码 | 文件源码
def _distort_image(self, image):
    """Distort one image for training a network.

    Adopted the standard data augmentation scheme that is widely used for
    this dataset: the images are first zero-padded with 4 pixels on each side,
    then randomly cropped to again produce distorted images; half of the images
    are then horizontally mirrored.

    Args:
      image: input image.
    Returns:
      distored image.
    """
    image = tf.image.resize_image_with_crop_or_pad(
        image, self.height + 8, self.width + 8)
    distorted_image = tf.random_crop(image,
                                     [self.height, self.width, self.depth])
    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)
    if self.summary_verbosity >= 3:
      tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0))
    return distorted_image
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def _fc(self, x, fan_in, fan_out, layer_name, activation=None, L2=1, use_bias=True,
        wmin=None,wmax=None,analysis=False):
        show_weight = self.flags.visualize and 'weight' in self.flags.visualize
        if wmin is not None or wmax is not None:
            use_bias = False
            assert wmin is not None and wmax is not None
        with tf.variable_scope(layer_name.split('/')[-1]):
            w,b = self._get_fc_weights(fan_in, fan_out, layer_name)
            if wmin is not None:
                wr = wmax-wmin
                w = self._activate(w,'sigmoid')*wr+wmin
                #w = tf.clip_by_value(w,wmin,wmax)
            net = tf.matmul(x,w)
            if use_bias:
                net = tf.nn.bias_add(net, b)
            net = self._activate(net, activation)
            if show_weight:
                tf.summary.histogram(name='W', values=w, collections=[tf.GraphKeys.WEIGHTS])
                if use_bias:
                    tf.summary.histogram(name='bias', values=b, collections=[tf.GraphKeys.WEIGHTS])
        if analysis:
            net1 = tf.expand_dims(x,2)*tf.expand_dims(w,0)
            #net1 = tf.reshape(net1,[tf.shape(x)[0],fan_in*fan_out])
            return net,net1
        return net
项目:deligan    作者:val-iisc    | 项目源码 | 文件源码
def Minibatch_Discriminator(input, num_kernels=100, dim_per_kernel=5, init=False, name='MD'):
    num_inputs=df_dim*4
    theta = tf.get_variable(name+"/theta",[num_inputs, num_kernels, dim_per_kernel], initializer=tf.random_normal_initializer(stddev=0.05))
    log_weight_scale = tf.get_variable(name+"/lws",[num_kernels, dim_per_kernel], initializer=tf.constant_initializer(0.0))
    W = tf.mul(theta, tf.expand_dims(tf.exp(log_weight_scale)/tf.sqrt(tf.reduce_sum(tf.square(theta),0)),0))
    W = tf.reshape(W,[-1,num_kernels*dim_per_kernel])
    x = input
    x=tf.reshape(x, [batchsize,num_inputs])
    activation = tf.matmul(x, W)
    activation = tf.reshape(activation,[-1,num_kernels,dim_per_kernel])
    abs_dif = tf.mul(tf.reduce_sum(tf.abs(tf.sub(tf.expand_dims(activation,3),tf.expand_dims(tf.transpose(activation,[1,2,0]),0))),2),
                                                1-tf.expand_dims(tf.constant(np.eye(batchsize),dtype=np.float32),1))
    f = tf.reduce_sum(tf.exp(-abs_dif),2)/tf.reduce_sum(tf.exp(-abs_dif))
    print(f.get_shape())
    print(input.get_shape())
    return tf.concat(1,[x, f])
项目:text_classification    作者:brightmart    | 项目源码 | 文件源码
def output_module(self):
        """
        1.use attention mechanism between query and hidden states, to get weighted sum of hidden state. 2.non-linearity of query and hidden state to get label.
        input: query_embedding:[batch_size,embed_size], hidden state:[batch_size,block_size,hidden_size] of memory
        :return:y: predicted label.[]
        """
        # 1.use attention mechanism between query and hidden states, to get weighted sum of hidden state.
        # 1.1 get possibility distribution (of similiarity)
        p=tf.nn.softmax(tf.multiply(tf.expand_dims(self.query_embedding,axis=1),self.hidden_state)) #shape:[batch_size,block_size,hidden_size]<---query_embedding_expand:[batch_size,1,hidden_size]; hidden_state:[batch_size,block_size,hidden_size]
        # 1.2 get weighted sum of hidden state
        u=tf.reduce_sum(tf.multiply(p,self.hidden_state),axis=1) #shape:[batch_size,hidden_size]<----------([batch_size,block_size,hidden_size],[batch_size,block_size,hidden_size])

        # 2.non-linearity of query and hidden state to get label
        H_u_matmul=tf.matmul(u,self.H)+self.h_u_bias #shape:[batch_size,hidden_size]<----([batch_size,hidden_size],[hidden_size,hidden_size])
        activation=self.activation(self.query_embedding + H_u_matmul,scope="query_add_hidden")           #shape:[batch_size,hidden_size]
        activation = tf.nn.dropout(activation,keep_prob=self.dropout_keep_prob) #shape:[batch_size,hidden_size]
        y=tf.matmul(activation,self.R)+self.y_bias #shape:[batch_size,vocab_size]<-----([batch_size,hidden_size],[hidden_size,vocab_size])
        return y #shape:[batch_size,vocab_size]
项目:text_classification    作者:brightmart    | 项目源码 | 文件源码
def rnn_story(self):
        """
        run rnn for story to get last hidden state
        input is:  story:                 [batch_size,story_length,embed_size]
        :return:   last hidden state.     [batch_size,embed_size]
        """
        # 1.split input to get lists.
        input_split=tf.split(self.story_embedding,self.story_length,axis=1) #a list.length is:story_length.each element is:[batch_size,1,embed_size]
        input_list=[tf.squeeze(x,axis=1) for x in input_split]           #a list.length is:story_length.each element is:[batch_size,embed_size]
        # 2.init keys(w_all) and values(h_all) of memory
        h_all=tf.get_variable("hidden_states",shape=[self.block_size,self.dimension],initializer=self.initializer)# [block_size,hidden_size]
        w_all=tf.get_variable("keys",          shape=[self.block_size,self.dimension],initializer=self.initializer)# [block_size,hidden_size]
        # 3.expand keys and values to prepare operation of rnn
        w_all_expand=tf.tile(tf.expand_dims(w_all,axis=0),[self.batch_size,1,1]) #[batch_size,block_size,hidden_size]
        h_all_expand=tf.tile(tf.expand_dims(h_all,axis=0),[self.batch_size,1,1]) #[batch_size,block_size,hidden_size]
        # 4. run rnn using input with cell.
        for i,input in enumerate(input_list):
            h_all_expand=self.cell(input,h_all_expand,w_all_expand,i) #w_all:[batch_size,block_size,hidden_size]; h_all:[batch_size,block_size,hidden_size]
        return h_all_expand #[batch_size,block_size,hidden_size]
项目:text_classification    作者:brightmart    | 项目源码 | 文件源码
def position_wise_feed_forward_fn(self):
        """
        x:       [batch,sequence_length,d_model]
        :return: [batch,sequence_length,d_model]
        """
        output=None
        #1.conv1
        input=tf.expand_dims(self.x,axis=3) #[batch,sequence_length,d_model,1]
        # conv2d.input:       [None,sentence_length,embed_size,1]. filter=[filter_size,self.embed_size,1,self.num_filters]
        # output with padding:[None,sentence_length,1,1]
        filter1 = tf.get_variable("filter1"+str(self.layer_index) , shape=[1, self.d_model, 1, 1],initializer=self.initializer)
        ouput_conv1=tf.nn.conv2d(input,filter1,strides=[1,1,1,1],padding="VALID",name="conv1") #[batch,sequence_length,1,1]
        print("output_conv1:",ouput_conv1)

        #2.conv2
        filter2 = tf.get_variable("filter2"+str(self.layer_index), [1, 1, 1, self.d_model], initializer=self.initializer)
        output_conv2=tf.nn.conv2d(ouput_conv1,filter2,strides=[1,1,1,1],padding="VALID",name="conv2") #[batch,sequence_length,1,d_model]
        output=tf.squeeze(output_conv2) #[batch,sequence_length,d_model]
        return output #[batch,sequence_length,d_model]

#test function of position_wise_feed_forward_fn
#time spent:OLD VERSION: length=8000,time spent:35.6s; NEW VERSION:0.03s
项目:text_classification    作者:brightmart    | 项目源码 | 文件源码
def inference(self):
        """main computation graph here: 1. embeddding layers, 2.convolutional layer, 3.max-pooling, 4.softmax layer."""
        # 1.=====>get emebedding of words in the sentence
        self.embedded_words1 = tf.nn.embedding_lookup(self.Embedding,self.input_x)#[None,sentence_length,embed_size]
        self.sentence_embeddings_expanded1=tf.expand_dims(self.embedded_words1,-1) #[None,sentence_length,embed_size,1). expand dimension so meet input requirement of 2d-conv
        self.embedded_words2 = tf.nn.embedding_lookup(self.Embedding,self.input_x2)#[None,sentence_length,embed_size]
        self.sentence_embeddings_expanded2=tf.expand_dims(self.embedded_words2,-1) #[None,sentence_length,embed_size,1). expand dimension so meet input requirement of 2d-conv
        #2.1 get features of sentence1
        h1=self.conv_relu_pool_dropout(self.sentence_embeddings_expanded1,name_scope_prefix="s1") #[None,num_filters_total]
        #2.2 get features of sentence2
        h2 =self.conv_relu_pool_dropout(self.sentence_embeddings_expanded2,name_scope_prefix="s2")  # [None,num_filters_total]
        #3. concat features
        h=tf.concat([h1,h2],axis=1) #[None,num_filters_total*2]
        #4. logits(use linear layer)and predictions(argmax)
        with tf.name_scope("output"):
            logits = tf.matmul(h,self.W_projection) + self.b_projection  #shape:[None, self.num_classes]==tf.matmul([None,self.num_filters_total*2],[self.num_filters_total*2,self.num_classes])
        return logits
项目:text_classification    作者:brightmart    | 项目源码 | 文件源码
def loss_nce(self,l2_lambda=0.0001): #0.0001-->0.001
        """calculate loss using (NCE)cross entropy here"""
        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels each
        # time we evaluate the loss.
        if self.is_training: #training
            #labels=tf.reshape(self.input_y,[-1])               #[batch_size,1]------>[batch_size,]
            labels=tf.expand_dims(self.input_y,1)                   #[batch_size,]----->[batch_size,1]
            loss = tf.reduce_mean( #inputs: A `Tensor` of shape `[batch_size, dim]`.  The forward activations of the input network.
                tf.nn.nce_loss(weights=tf.transpose(self.W_projection),#[hidden_size*2, num_classes]--->[num_classes,hidden_size*2]. nce_weights:A `Tensor` of shape `[num_classes, dim].O.K.
                               biases=self.b_projection,                 #[label_size]. nce_biases:A `Tensor` of shape `[num_classes]`.
                               labels=labels,                 #[batch_size,1]. train_labels, # A `Tensor` of type `int64` and shape `[batch_size,num_true]`. The target classes.
                               inputs=self.output_rnn_last,# [batch_size,hidden_size*2] #A `Tensor` of shape `[batch_size, dim]`.  The forward activations of the input network.
                               num_sampled=self.num_sampled,  #scalar. 100
                               num_classes=self.num_classes,partition_strategy="div"))  #scalar. 1999
        l2_losses = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name]) * l2_lambda
        loss = loss + l2_losses
        return loss
项目:tfutils    作者:neuroailab    | 项目源码 | 文件源码
def average_gradients(cls, tower_grads):
        """Average a list of (grads, vars) produced by `compute_gradients`."""
        average_grads = []
        for grads_and_vars in zip(*tower_grads):
            # print(grads_and_vars)
            grads = []
            for g, _ in grads_and_vars:
                # print(g.get_shape().as_list(), g)
                grads.append(tf.expand_dims(g, axis=0))
            grad = tf.concat(grads, axis=0)
            grad = tf.reduce_mean(grad, axis=0)
            # all variables are the same so we just use the first gpu variables
            var = grads_and_vars[0][1]
            grad_and_var = (grad, var)
            average_grads.append(grad_and_var)
        return average_grads
项目:DmsMsgRcg    作者:bshao001    | 项目源码 | 文件源码
def custom_loss(y_true, y_pred):
        # Get prediction
        pred_box_xy = tf.sigmoid(y_pred[..., :2])
        pred_box_wh = y_pred[..., 2:4]
        pred_box_conf = tf.sigmoid(y_pred[..., 4])

        # Get ground truth
        true_box_xy = y_true[..., :2]
        true_box_wh = y_true[..., 2:4]
        true_box_conf = y_true[..., 4]

        # Determine the mask: simply the position of the ground truth boxes (the predictors)
        true_mask = tf.expand_dims(y_true[..., 4], axis=-1)

        # Calculate the loss. A scale can be associated with each loss, indicating how important
        # the loss is. The bigger the scale, more important the loss is.
        loss_xy = tf.reduce_sum(tf.square(true_box_xy - pred_box_xy) * true_mask) * 1.0
        loss_wh = tf.reduce_sum(tf.square(true_box_wh - pred_box_wh) * true_mask) * 1.0
        loss_conf = tf.reduce_sum(tf.square(true_box_conf - pred_box_conf)) * 1.2

        loss = loss_xy + loss_wh + loss_conf
        return loss
项目:RaspberryPi-Robot    作者:timestocome    | 项目源码 | 文件源码
def read_tensor_from_image_file(file_name='test.jpg', input_height=128, input_width=128,
                input_mean=0, input_std=255):


  input_name = "file_reader"
  output_name = "normalized"
  file_reader = tf.read_file(file_name, input_name)
  image_reader = tf.image.decode_jpeg(file_reader, channels = 3, name='jpeg_reader')
  float_caster = tf.cast(image_reader, tf.float32)
  dims_expander = tf.expand_dims(float_caster, 0);
  resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
  normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
  sess = tf.Session()
  result = sess.run(normalized)

  return result
项目:deeppavlov    作者:deepmipt    | 项目源码 | 文件源码
def masked_softmax(tensor, mask, expand=2, axis=1):
    """Masked soft-max using Lambda and merge-multiplication.

    Args:
        tensor: tensor containing scores
        mask: mask for tensor where 1 - means values at this position and 0 - means void, padded, etc..
        expand: axis along which to repeat mask
        axis: axis along which to compute soft-max

    Returns:
        masked soft-max values
    """

    mask = tf.expand_dims(mask, axis=expand)
    exponentiate = Lambda(lambda x: K.exp(x - K.max(x, axis=axis, keepdims=True)))(tensor)
    masked = tf.multiply(exponentiate, mask)
    div = tf.expand_dims(tf.reduce_sum(masked, axis=axis), axis=axis)
    predicted = tf.divide(masked, div)
    return predicted
项目:Face-Pose-Net    作者:fengju514    | 项目源码 | 文件源码
def _meshgrid(self, height, width):
    with tf.variable_scope('_meshgrid'):
      # This should be equivalent to:
      #  x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
      #                         np.linspace(-1, 1, height))
      #  ones = np.ones(np.prod(x_t.shape))
      #  grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
      x_t = tf.matmul(tf.ones(shape=tf.pack([height, 1])),
                        tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
      y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
                        tf.ones(shape=tf.pack([1, width])))

      x_t_flat = tf.reshape(x_t, (1, -1))
      y_t_flat = tf.reshape(y_t, (1, -1))

      ones = tf.ones_like(x_t_flat)
      grid = tf.concat(0, [x_t_flat, y_t_flat, ones])
      return grid
项目:KATE    作者:hugochan    | 项目源码 | 文件源码
def kSparse(self, x, topk):
        print 'run regular k-sparse'
        dim = int(x.get_shape()[1])
        if topk > dim:
            warnings.warn('Warning: topk should not be larger than dim: %s, found: %s, using %s' % (dim, topk, dim))
            topk = dim

        k = dim - topk
        values, indices = tf.nn.top_k(-x, k) # indices will be [[0, 1], [2, 1]], values will be [[6., 2.], [5., 4.]]

        # We need to create full indices like [[0, 0], [0, 1], [1, 2], [1, 1]]
        my_range = tf.expand_dims(tf.range(0, tf.shape(indices)[0]), 1)  # will be [[0], [1]]
        my_range_repeated = tf.tile(my_range, [1, k])  # will be [[0, 0], [1, 1]]

        full_indices = tf.stack([my_range_repeated, indices], axis=2) # change shapes to [N, k, 1] and [N, k, 1], to concatenate into [N, k, 2]
        full_indices = tf.reshape(full_indices, [-1, 2])

        to_reset = tf.sparse_to_dense(full_indices, tf.shape(x), tf.reshape(values, [-1]), default_value=0., validate_indices=False)

        res = tf.add(x, to_reset)

        return res
项目:Unsupervised-Anomaly-Detection-with-Generative-Adversarial-Networks    作者:xtarx    | 项目源码 | 文件源码
def minibatch_discrimination(input_layer, num_kernels, dim_per_kernel=5, name='minibatch_discrim'):
    # batch_size = input_layer.shape[0]
    # num_features = input_layer.shape[1]
    batch_size = input_layer.get_shape().as_list()[0]
    num_features = input_layer.get_shape().as_list()[1]
    W = tf.get_variable('W', [num_features, num_kernels * dim_per_kernel],
                        initializer=tf.contrib.layers.xavier_initializer())
    b = tf.get_variable('b', [num_kernels], initializer=tf.constant_initializer(0.0))
    activation = tf.matmul(input_layer, W)
    activation = tf.reshape(activation, [batch_size, num_kernels, dim_per_kernel])
    tmp1 = tf.expand_dims(activation, 3)
    tmp2 = tf.transpose(activation, perm=[1, 2, 0])
    tmp2 = tf.expand_dims(tmp2, 0)
    abs_diff = tf.reduce_sum(tf.abs(tmp1 - tmp2), reduction_indices=[2])
    f = tf.reduce_sum(tf.exp(-abs_diff), reduction_indices=[2])
    f = f + b
    return f
项目:traffic_detection_yolo2    作者:wAuner    | 项目源码 | 文件源码
def yolo_loss(labels, predictions, mask):
    masked_labels = tf.boolean_mask(labels, mask)
    masked_predictions = tf.boolean_mask(predictions, mask)

    # ious = tensor_iou(masked_predictions[..., 1:5], masked_labels[..., 1:5])
    # ious = tf.expand_dims(ious, axis=-1)

    xy_loss = tf.reduce_sum((masked_labels[..., :2] - masked_predictions[..., 1:3]) ** 2)
    wh_loss = tf.reduce_sum((tf.sqrt(masked_predictions[..., 3:5]) - tf.sqrt(masked_labels[..., 2:4])) ** 2)

    #     conf_loss = tf.reduce_sum((masked_predictions[..., 0] - ious) ** 2)

    conf_loss = tf.reduce_sum((1 - masked_predictions[..., 0]) ** 2)

    no_obj_loss = tf.reduce_sum((tf.boolean_mask(predictions, ~mask)[..., 0] ** 2))

    class_loss = tf.reduce_sum((masked_predictions[..., 5:] - masked_labels[..., 4:]) ** 2)

    loss = 5 * (xy_loss + wh_loss) + conf_loss + no_obj_loss + class_loss

    return loss
项目:onsager_deep_learning    作者:mborgerding    | 项目源码 | 文件源码
def random_access_problem(which=1):
    import raputil as ru
    if which == 1:
        opts = ru.Problem.scenario1()
    else:
        opts = ru.Problem.scenario2()

    p = ru.Problem(**opts)
    x1 = p.genX(1)
    y1 = p.fwd(x1)
    A = p.S
    M,N = A.shape
    nbatches = int(math.ceil(1000 /x1.shape[1]))
    prob = NumpyGenerator(p=p,nbatches=nbatches,A=A,opts=opts,iid=(which==1))
    if which==2:
        prob.maskX_ = tf.expand_dims( tf.constant( (np.arange(N) % (N//2) < opts['Nu']).astype(np.float32) ) , 1)

    _,prob.noise_var = p.add_noise(y1)

    unused = p.genYX(nbatches) # for legacy reasons -- want to compare against a previous run
    (prob.yval, prob.xval) = p.genYX(nbatches)
    (prob.yinit, prob.xinit) = p.genYX(nbatches)
    import multiprocessing as mp
    prob.nsubprocs = mp.cpu_count()
    return prob
项目:onsager_deep_learning    作者:mborgerding    | 项目源码 | 文件源码
def pwlin_grid(r_,rvar_,theta_,dtheta = .75):
    """piecewise linear with noise-adaptive grid spacing.
    returns xhat,dxdr
    where
        q = r/dtheta/sqrt(rvar)
        xhat = r * interp(q,theta)

    all but the  last dimensions of theta must broadcast to r_
    e.g. r.shape = (500,1000) is compatible with theta.shape=(500,1,7)
    """
    ntheta = int(theta_.get_shape()[-1])
    scale_ = dtheta / tf.sqrt(rvar_)
    ars_ = tf.clip_by_value( tf.expand_dims( tf.abs(r_)*scale_,-1),0.0, ntheta-1.0 )
    centers_ = tf.constant( np.arange(ntheta),dtype=tf.float32 )
    outer_distance_ = tf.maximum(0., 1.0-tf.abs(ars_ - centers_) ) # new dimension for distance to closest bin centers (or center)
    gain_ = tf.reduce_sum( theta_ * outer_distance_,axis=-1) # apply the gain (learnable)
    xhat_ = gain_ * r_
    dxdr_ = tf.gradients(xhat_,r_)[0]
    return (xhat_,dxdr_)
项目:onsager_deep_learning    作者:mborgerding    | 项目源码 | 文件源码
def interp1d_(xin_,xp,yp_):
    """
    Interpolate a uniformly sampled piecewise linear function. Mapping elements
    from xin_ to the result.  Input values will be clipped to range of xp.
        xin_ :  input tensor (real)
        xp : x grid (constant -- must be a 1d numpy array, uniformly spaced)
        yp_ : tensor of the result values at the gridpoints xp
    """
    import tensorflow as tf
    x_ = tf.clip_by_value(xin_,xp.min(),xp.max())
    dx = xp[1]-xp[0]
    assert len(xp.shape)==1,'only 1d interpolation'
    assert xp.shape[0]==int(yp_.get_shape()[0])
    assert abs(np.diff(xp)/dx - 1.0).max() < 1e-6,'must be uniformly sampled'

    newshape = [  ]
    x1_ = tf.expand_dims(x_,-1)
    dt = yp_.dtype
    wt_ = tf.maximum(tf.constant(0.,dtype=dt), 1-abs(x1_ - tf.constant(xp,dtype=dt))/dx  )
    y_ = tf.reduce_sum(wt_ * yp_,axis=-1)
    return y_
项目:paraphrase-id-tensorflow    作者:nelson-liu    | 项目源码 | 文件源码
def calculate_cosine_similarity_matrix(v1, v2):
    """
    Calculate the cosine similarity matrix between two
    sentences.

    Parameters
    ----------
    v1: Tensor
        Tensor of shape (batch_size, num_sentence_words,
        context_rnn_hidden_size), representing the output of running
        a sentence through a BiLSTM.

    v2: Tensor
        Tensor of shape (batch_size, num_sentence_words,
        context_rnn_hidden_size), representing the output of running
        another sentences through a BiLSTM.
    """
    # Shape: (batch_size, 1, num_sentence_words, rnn_hidden_size)
    expanded_v1 = tf.expand_dims(v1, 1)
    # Shape: (batch_size, num_sentence_words, 1, rnn_hidden_size)
    expanded_v2 = tf.expand_dims(v2, 2)
    # Shape: (batch_size, num_sentence_words, num_sentence_words)
    cosine_relevancy_matrix = cosine_distance(expanded_v1,
                                              expanded_v2)
    return cosine_relevancy_matrix
项目:paraphrase-id-tensorflow    作者:nelson-liu    | 项目源码 | 文件源码
def mask_similarity_matrix(similarity_matrix, mask_a, mask_b):
    """
    Given the mask of the two sentences, apply the mask to the similarity
    matrix.

    Parameters
    ----------
    similarity_matrix: Tensor
        Tensor of shape (batch_size, num_sentence_words, num_sentence_words).

    mask_a: Tensor
        Tensor of shape (batch_size, num_sentence_words). This mask should
        correspond to the first vector (v1) used to calculate the similarity
        matrix.

    mask_b: Tensor
        Tensor of shape (batch_size, num_sentence_words). This mask should
        correspond to the second vector (v2) used to calculate the similarity
        matrix.
    """
    similarity_matrix = tf.multiply(similarity_matrix,
                                    tf.expand_dims(tf.cast(mask_a, "float"), 1))
    similarity_matrix = tf.multiply(similarity_matrix,
                                    tf.expand_dims(tf.cast(mask_b, "float"), 2))
    return similarity_matrix
项目:paraphrase-id-tensorflow    作者:nelson-liu    | 项目源码 | 文件源码
def multi_perspective_expand_for_1D(in_tensor, weights):
    """
    Given a 1D input tensor and weights of the appropriate shape,
    weight the input tensor by the weights by multiplying them
    together.

    Parameters
    ----------
    in_tensor:
        Tensor of shape (x,) to be weighted.

    weights:
        Tensor of shape (y, x) to multiply the input tensor by. In this
        case, y is the number of perspectives.

    Returns
    -------
    weighted_input:
        Tensor of shape (y, x), representing the weighted input
        across multiple perspectives.
    """
    # Shape: (1, rnn_hidden_dim)
    in_tensor_expanded = tf.expand_dims(in_tensor, axis=0)
    # Shape: (multiperspective_dims, rnn_hidden_dim)
    return tf.multiply(in_tensor_expanded, weights)
项目:combine-DT-with-NN-in-RL    作者:Burning-Bear    | 项目源码 | 文件源码
def dueling_model(img_in, num_actions, scope, reuse=False):
    """As described in https://arxiv.org/abs/1511.06581"""
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
        out = layers.flatten(out)

        with tf.variable_scope("state_value"):
            state_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
            state_score = layers.fully_connected(state_hidden, num_outputs=1, activation_fn=None)
        with tf.variable_scope("action_value"):
            actions_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
            action_scores = layers.fully_connected(actions_hidden, num_outputs=num_actions, activation_fn=None)
            action_scores_mean = tf.reduce_mean(action_scores, 1)
            action_scores = action_scores - tf.expand_dims(action_scores_mean, 1)

        return state_score + action_scores
项目:combine-DT-with-NN-in-RL    作者:Burning-Bear    | 项目源码 | 文件源码
def dueling_model(img_in, num_actions, scope, reuse=False):
    """As described in https://arxiv.org/abs/1511.06581"""
    with tf.variable_scope(scope, reuse=reuse):
        out = img_in
        with tf.variable_scope("convnet"):
            # original architecture
            out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
            out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
        out = layers.flatten(out)

        with tf.variable_scope("state_value"):
            state_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
            state_score = layers.fully_connected(state_hidden, num_outputs=1, activation_fn=None)
        with tf.variable_scope("action_value"):
            actions_hidden = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
            action_scores = layers.fully_connected(actions_hidden, num_outputs=num_actions, activation_fn=None)
            action_scores_mean = tf.reduce_mean(action_scores, 1)
            action_scores = action_scores - tf.expand_dims(action_scores_mean, 1)

        return state_score + action_scores
项目:X-ray-classification    作者:bendidi    | 项目源码 | 文件源码
def preprocess_for_eval(image, height, width,
                        central_fraction=0.875, scope=None):
  """Prepare one image for evaluation.
  If height and width are specified it would output an image with that size by
  applying resize_bilinear.
  If central_fraction is specified it would cropt the central fraction of the
  input image.
  Args:
    image: 3-D Tensor of image. If dtype is tf.float32 then the range should be
      [0, 1], otherwise it would converted to tf.float32 assuming that the range
      is [0, MAX], where MAX is largest positive representable number for
      int(8/16/32) data type (see `tf.image.convert_image_dtype` for details)
    height: integer
    width: integer
    central_fraction: Optional Float, fraction of the image to crop.
    scope: Optional scope for name_scope.
  Returns:
    3-D float Tensor of prepared image.
  """
  with tf.name_scope(scope, 'eval_image', [image, height, width]):
    if image.dtype != tf.float32:
      image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    # Crop the central region of the image with an area containing 87.5% of
    # the original image.
    if central_fraction:
      image = tf.image.central_crop(image, central_fraction=central_fraction)

    if height and width:
      # Resize the image to the specified height and width.
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(image, [height, width],
                                       align_corners=False)
      image = tf.squeeze(image, [0])
    image = tf.subtract(image, 0.5)
    image = tf.multiply(image, 2.0)
    return image
项目:X-ray-classification    作者:bendidi    | 项目源码 | 文件源码
def load_batch(dataset, batch_size, height=image_size, width=image_size, is_training=True):
    '''
    Loads a batch for training.
    INPUTS:
    - dataset(Dataset): a Dataset class object that is created from the get_split function
    - batch_size(int): determines how big of a batch to train
    - height(int): the height of the image to resize to during preprocessing
    - width(int): the width of the image to resize to during preprocessing
    - is_training(bool): to determine whether to perform a training or evaluation preprocessing
    OUTPUTS:
    - images(Tensor): a Tensor of the shape (batch_size, height, width, channels) that contain one batch of images
    - labels(Tensor): the batch's labels with the shape (batch_size,) (requires one_hot_encoding).
    '''
    #First create the data_provider object
    data_provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        common_queue_capacity = 24 + 3 * batch_size,
        common_queue_min = 24)

    #Obtain the raw image using the get method
    raw_image, label = data_provider.get(['image', 'label'])

    #Perform the correct preprocessing for this image depending if it is training or evaluating
    image = inception_preprocessing.preprocess_image(raw_image, height, width, is_training)

    #As for the raw images, we just do a simple reshape to batch it up
    raw_image = tf.expand_dims(raw_image, 0)
    raw_image = tf.image.resize_nearest_neighbor(raw_image, [height, width])
    raw_image = tf.squeeze(raw_image)

    #Batch up the image by enqueing the tensors internally in a FIFO queue and dequeueing many elements with tf.train.batch.
    images, raw_images, labels = tf.train.batch(
        [image, raw_image, label],
        batch_size = batch_size,
        num_threads = 4,
        capacity = 4 * batch_size,
        allow_smaller_final_batch = True)

    return images, raw_images, labels
项目:topically-driven-language-model    作者:jhlau    | 项目源码 | 文件源码
def generate_on_topic(self, sess, topic_id, start_word_id, temperature=1.0, max_length=30, stop_word_id=None): 
        if topic_id != -1:
            topic_emb = sess.run(tf.expand_dims(tf.nn.embedding_lookup(self.topic_output_embedding, topic_id), 0))
        else:
            topic_emb = None
        return self.generate(sess, topic_emb, start_word_id, temperature, max_length, stop_word_id)

    #generate a sequence of words, given a document
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def finalize_predictions(self, preds):
        # add a dimension of 1 between the batch size and the sequence length to emulate a beam width of 1 
        return tf.expand_dims(preds.sequence, axis=1)
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def _tile_batch(self, t):
        if t.shape.ndims is None or t.shape.ndims < 1:
            raise ValueError("t must have statically known rank")
        tiling = [1] * (t.shape.ndims + 1)
        tiling[1] = self._beam_width
        tiled = tf.tile(tf.expand_dims(t, 1), tiling)
        return tiled
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def _make_beam_mask(self, num_available_beams):
        mask = tf.sequence_mask(num_available_beams, self._beam_width)
        return tf.tile(tf.expand_dims(mask, axis=2), multiples=[1, 1, self._output_size])
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def _tensor_gather_helper(gather_indices, gather_from, batch_size,
                          range_size, gather_shape):
    """Helper for gathering the right indices from the tensor.
    This works by reshaping gather_from to gather_shape (e.g. [-1]) and then
    gathering from that according to the gather_indices, which are offset by
    the right amounts in order to preserve the batch order.
    Args:
      gather_indices: The tensor indices that we use to gather.
      gather_from: The tensor that we are gathering from.
      batch_size: The input batch size.
      range_size: The number of values in each range. Likely equal to beam_width.
      gather_shape: What we should reshape gather_from to in order to preserve the
        correct values. An example is when gather_from is the attention from an
        AttentionWrapperState with shape [batch_size, beam_width, attention_size].
        There, we want to preserve the attention_size elements, so gather_shape is
        [batch_size * beam_width, -1]. Then, upon reshape, we still have the
        attention_size as desired.
    Returns:
      output: Gathered tensor of shape tf.shape(gather_from)[:1+len(gather_shape)]
    """
    range_ = tf.expand_dims(tf.range(batch_size) * range_size, 1)
    gather_indices = tf.reshape(gather_indices + range_, [-1])
    output = tf.gather(tf.reshape(gather_from, gather_shape), gather_indices)
    final_shape = tf.shape(gather_from)[:1 + len(gather_shape)]
    final_static_shape = (tf.TensorShape([None]).concatenate(gather_from.shape[1:1 + len(gather_shape)]))
    output = tf.reshape(output, final_shape)
    output.set_shape(final_static_shape)
    return output
项目:facerecognition    作者:guoxiaolu    | 项目源码 | 文件源码
def decov_loss(xs):
    """Decov loss as described in https://arxiv.org/pdf/1511.06068.pdf
    'Reducing Overfitting In Deep Networks by Decorrelating Representation'
    """
    x = tf.reshape(xs, [int(xs.get_shape()[0]), -1])
    m = tf.reduce_mean(x, 0, True)
    z = tf.expand_dims(x-m, 2)
    corr = tf.reduce_mean(tf.matmul(z, tf.transpose(z, perm=[0,2,1])), 0)
    corr_frob_sqr = tf.reduce_sum(tf.square(corr))
    corr_diag_sqr = tf.reduce_sum(tf.square(tf.diag_part(corr)))
    loss = 0.5*(corr_frob_sqr - corr_diag_sqr)
    return loss
项目:AVSR-Deep-Speech    作者:pandeydivesh15    | 项目源码 | 文件源码
def average_gradients(tower_gradients):
    r'''
    A routine for computing each variable's average of the gradients obtained from the GPUs.
    Note also that this code acts as a syncronization point as it requires all
    GPUs to be finished with their mini-batch before it can run to completion.
    '''
    # List of average gradients to return to the caller
    average_grads = []

    # Loop over gradient/variable pairs from all towers
    for grad_and_vars in zip(*tower_gradients):
        # Introduce grads to store the gradients for the current variable
        grads = []

        # Loop over the gradients for the current variable
        for g, _ in grad_and_vars:
            # Add 0 dimension to the gradients to represent the tower.
            expanded_g = tf.expand_dims(g, 0)
            # Append on a 'tower' dimension which we will average over below.
            grads.append(expanded_g)

        # Average over the 'tower' dimension
        grad = tf.concat(grads, 0)
        grad = tf.reduce_mean(grad, 0)

        # Create a gradient/variable tuple for the current variable with its average gradient
        grad_and_var = (grad, grad_and_vars[0][1])

        # Add the current tuple to average_grads
        average_grads.append(grad_and_var)

    # Return result to caller
    return average_grads



# Logging
# =======
项目:AVSR-Deep-Speech    作者:pandeydivesh15    | 项目源码 | 文件源码
def ctc_label_dense_to_sparse(labels, label_lengths, batch_size):
    # The second dimension of labels must be equal to the longest label length in the batch
    correct_shape_assert = tf.assert_equal(tf.shape(labels)[1], tf.reduce_max(label_lengths))
    with tf.control_dependencies([correct_shape_assert]):
        labels = tf.identity(labels)

    label_shape = tf.shape(labels)
    num_batches_tns = tf.stack([label_shape[0]])
    max_num_labels_tns = tf.stack([label_shape[1]])
    def range_less_than(previous_state, current_input):
        return tf.expand_dims(tf.range(label_shape[1]), 0) < current_input

    init = tf.cast(tf.fill(max_num_labels_tns, 0), tf.bool)
    init = tf.expand_dims(init, 0)
    dense_mask = tf.scan(range_less_than, label_lengths, initializer=init, parallel_iterations=1)
    dense_mask = dense_mask[:, 0, :]

    label_array = tf.reshape(tf.tile(tf.range(0, label_shape[1]), num_batches_tns),
          label_shape)
    label_ind = tf.boolean_mask(label_array, dense_mask)

    batch_array = tf.transpose(tf.reshape(tf.tile(tf.range(0, label_shape[0]), max_num_labels_tns), tf.reverse(label_shape, [0])))
    batch_ind = tf.boolean_mask(batch_array, dense_mask)

    indices = tf.transpose(tf.reshape(tf.concat([batch_ind, label_ind], 0), [2, -1]))
    shape = [batch_size, tf.reduce_max(label_lengths)]
    vals_sparse = gather_nd(labels, indices, shape)

    return tf.SparseTensor(tf.to_int64(indices), vals_sparse, tf.to_int64(label_shape))

# Validate and normalize transcriptions. Returns a cleaned version of the label
# or None if it's invalid.
项目:AVSR-Deep-Speech    作者:pandeydivesh15    | 项目源码 | 文件源码
def ctc_label_dense_to_sparse(labels, label_lengths, batch_size):
    # The second dimension of labels must be equal to the longest label length in the batch
    correct_shape_assert = tf.assert_equal(tf.shape(labels)[1], tf.reduce_max(label_lengths))
    with tf.control_dependencies([correct_shape_assert]):
        labels = tf.identity(labels)

    label_shape = tf.shape(labels)
    num_batches_tns = tf.stack([label_shape[0]])
    max_num_labels_tns = tf.stack([label_shape[1]])
    def range_less_than(previous_state, current_input):
        return tf.expand_dims(tf.range(label_shape[1]), 0) < current_input

    init = tf.cast(tf.fill(max_num_labels_tns, 0), tf.bool)
    init = tf.expand_dims(init, 0)
    dense_mask = tf.scan(range_less_than, label_lengths, initializer=init, parallel_iterations=1)
    dense_mask = dense_mask[:, 0, :]

    label_array = tf.reshape(tf.tile(tf.range(0, label_shape[1]), num_batches_tns),
          label_shape)
    label_ind = tf.boolean_mask(label_array, dense_mask)

    batch_array = tf.transpose(tf.reshape(tf.tile(tf.range(0, label_shape[0]), max_num_labels_tns), tf.reverse(label_shape, [0])))
    batch_ind = tf.boolean_mask(batch_array, dense_mask)

    indices = tf.transpose(tf.reshape(tf.concat([batch_ind, label_ind], 0), [2, -1]))
    shape = [batch_size, tf.reduce_max(label_lengths)]
    vals_sparse = gather_nd(labels, indices, shape)

    return tf.SparseTensor(tf.to_int64(indices), vals_sparse, tf.to_int64(label_shape))

# Validate and normalize transcriptions. Returns a cleaned version of the label
# or None if it's invalid.