Python tensorflow 模块,truncated_normal() 实例源码

我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用tensorflow.truncated_normal()

项目:acdc_segmenter    作者:baumgach    | 项目源码 | 文件源码
def get_weight_variable(shape, name=None, type='xavier_uniform', regularize=True, **kwargs):

    initialise_from_constant = False
    if type == 'xavier_uniform':
        initial = xavier_initializer(uniform=True, dtype=tf.float32)
    elif type == 'xavier_normal':
        initial = xavier_initializer(uniform=False, dtype=tf.float32)
    elif type == 'he_normal':
        initial = variance_scaling_initializer(uniform=False, factor=2.0, mode='FAN_IN', dtype=tf.float32)
    elif type == 'he_uniform':
        initial = variance_scaling_initializer(uniform=True, factor=2.0, mode='FAN_IN', dtype=tf.float32)
    elif type == 'caffe_uniform':
        initial = variance_scaling_initializer(uniform=True, factor=1.0, mode='FAN_IN', dtype=tf.float32)
    elif type == 'simple':
        stddev = kwargs.get('stddev', 0.02)
        initial = tf.truncated_normal(shape, stddev=stddev, dtype=tf.float32)
        initialise_from_constant = True
    elif type == 'bilinear':
        weights = _bilinear_upsample_weights(shape)
        initial = tf.constant(weights, shape=shape, dtype=tf.float32)
        initialise_from_constant = True
    else:
        raise ValueError('Unknown initialisation requested: %s' % type)

    if name is None:  # This keeps to option open to use unnamed Variables
        weight = tf.Variable(initial)
    else:
        if initialise_from_constant:
            weight = tf.get_variable(name, initializer=initial)
        else:
            weight = tf.get_variable(name, shape=shape, initializer=initial)

    if regularize:
        tf.add_to_collection('weight_variables', weight)

    return weight
项目:tf-image-interpreter    作者:ThoughtWorksInc    | 项目源码 | 文件源码
def _conv_layer(self, bottom, filter_size, filter_num, scope_name, bottom_channel=None, padding='SAME'):
    if not bottom_channel:
      _, _, _, bottom_channel = bottom.get_shape().as_list()
    with tf.variable_scope(scope_name):
      kernel = tf.Variable(
        tf.truncated_normal([*filter_size, bottom_channel, filter_num], dtype=tf.float32, stddev=1e-1),
        trainable=False,
        name='weights'
      )

      conv = tf.nn.conv2d(bottom, kernel, [1, 1, 1, 1], padding=padding)
      biases = tf.Variable(
        tf.constant(0.0, shape=[filter_num], dtype=tf.float32),
        trainable=True,
        name='bias'
      )
      out = tf.nn.bias_add(conv, biases)

      return out
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def _get_weight_variable(self, layer_name, name, shape, L2=1):
        wname = '%s/%s:0'%(layer_name,name)
        fanin, fanout = shape[-2:]
        for dim in shape[:-2]:
            fanin *= float(dim)
            fanout *= float(dim)

        sigma = self._xavi_norm(fanin, fanout)
        if self.weights is None or wname not in self.weights:
            w1 = tf.get_variable(name,initializer=tf.truncated_normal(shape = shape,
                mean=0,stddev = sigma))
            print('{:>23} {:>23}'.format(wname, 'randomly initialize'))
        else:
            w1 = tf.get_variable(name, shape = shape,
                initializer=tf.constant_initializer(value=self.weights[wname],dtype=tf.float32))
            self.loaded_weights[wname]=1
        if wname != w1.name:
            print(wname,w1.name)
            assert False
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(w1)*L2)
        return w1
项目:how_to_convert_text_to_images    作者:llSourcell    | 项目源码 | 文件源码
def sample_encoded_context(self, embeddings):
        '''Helper function for init_opt'''
        c_mean_logsigma = self.model.generate_condition(embeddings)
        mean = c_mean_logsigma[0]
        if cfg.TRAIN.COND_AUGMENTATION:
            # epsilon = tf.random_normal(tf.shape(mean))
            epsilon = tf.truncated_normal(tf.shape(mean))
            stddev = tf.exp(c_mean_logsigma[1])
            c = mean + stddev * epsilon

            kl_loss = KL_loss(c_mean_logsigma[0], c_mean_logsigma[1])
        else:
            c = mean
            kl_loss = 0

        return c, cfg.TRAIN.COEFF.KL * kl_loss
项目:how_to_convert_text_to_images    作者:llSourcell    | 项目源码 | 文件源码
def sample_encoded_context(self, embeddings):
        '''Helper function for init_opt'''
        # Build conditioning augmentation structure for text embedding
        # under different variable_scope: 'g_net' and 'hr_g_net'
        c_mean_logsigma = self.model.generate_condition(embeddings)
        mean = c_mean_logsigma[0]
        if cfg.TRAIN.COND_AUGMENTATION:
            # epsilon = tf.random_normal(tf.shape(mean))
            epsilon = tf.truncated_normal(tf.shape(mean))
            stddev = tf.exp(c_mean_logsigma[1])
            c = mean + stddev * epsilon

            kl_loss = KL_loss(c_mean_logsigma[0], c_mean_logsigma[1])
        else:
            c = mean
            kl_loss = 0
        # TODO: play with the coefficient for KL
        return c, cfg.TRAIN.COEFF.KL * kl_loss
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def __init__(self, embedding_length):
    self._calculator_loom = CalculatorLoom(embedding_length)

    self._labels_placeholder = tf.placeholder(tf.float32)
    self._classifier_weights = tf.Variable(
        tf.truncated_normal([embedding_length, 3],
                            dtype=tf.float32,
                            stddev=1),
        name='classifier_weights')

    self._output_weights = tf.matmul(
        self._calculator_loom.output(), self._classifier_weights)
    self._loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
        logits=self._output_weights, labels=self._labels_placeholder))

    self._true_labels = tf.argmax(self._labels_placeholder, dimension=1)
    self._prediction = tf.argmax(self._output_weights, dimension=1)

    self._accuracy = tf.reduce_mean(tf.cast(
        tf.equal(self._true_labels, self._prediction),
        dtype=tf.float32))
项目:MultimodalAutoencoder    作者:natashamjaques    | 项目源码 | 文件源码
def weight_variable(shape, name, var_type='normal', const=1):
    """Initializes a tensorflow weight variable.

    Args:
        shape: An array representing shape of the weight variable
        name: A string name given to the variable.
        var_type: can be either 'normal', for weights following a Gaussian
            distribution around 0, or 'xavier', for the Xavier method
        const: Numeric value that controls the range of the weights within
            the Xavier method.
    Returns: Tensor variable for the weights
    """
    if var_type == 'xavier':
        """ Xavier initialization of network weights.
        Taken from: https://gist.github.com/blackecho/3a6e4d512d3aa8aa6cf9
        https://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow
        """
        assert len(shape) == 2
        low = -const * np.sqrt(6.0 / (shape[0] + shape[1]))
        high = const * np.sqrt(6.0 / (shape[0] + shape[1]))
        initial = tf.random_uniform((shape[0], shape[1]), minval=low, maxval=high)
    else:
        initial = tf.truncated_normal(shape, stddev=1.0 / math.sqrt(float(shape[0])), dtype=tf.float32)

    return tf.Variable(initial, name=name)
项目:dwt    作者:min2209    | 项目源码 | 文件源码
def get_conv_filter(self, params):
        if params["name"]+"/weights" in self.modelDict:
            init = tf.constant_initializer(value=self.modelDict[params["name"]+"/weights"], dtype=tf.float32)
            var = tf.get_variable(name="weights", initializer=init, shape=params["shape"])
            print "loaded " + params["name"]+"/weights"
        else:
            if params["std"]:
                stddev = params["std"]
            else:
                fanIn = params["shape"][0]*params["shape"][1]*params["shape"][2]
                stddev = (2/float(fanIn))**0.5

            init = tf.truncated_normal(shape=params["shape"], stddev=stddev, seed=0)
            var = tf.get_variable(name="weights", initializer=init)
            print "generated " + params["name"] + "/weights"

        if not tf.get_variable_scope().reuse:
            weightDecay = tf.mul(tf.nn.l2_loss(var), self._wd,
                                  name='weight_loss')
            tf.add_to_collection('losses', weightDecay)

        return var
项目:dwt    作者:min2209    | 项目源码 | 文件源码
def get_conv_filter(self, params):
        if params["name"]+"/weights" in self.modelDict:
            init = tf.constant_initializer(value=self.modelDict[params["name"]+"/weights"], dtype=tf.float32)
            var = tf.get_variable(name="weights", initializer=init, shape=params["shape"])
            print "loaded " + params["name"]+"/weights"
        else:
            if params["std"]:
                stddev = params["std"]
            else:
                fanIn = params["shape"][0]*params["shape"][1]*params["shape"][2]
                stddev = (2/float(fanIn))**0.5

            init = tf.truncated_normal(shape=params["shape"], stddev=stddev, seed=0)
            var = tf.get_variable(name="weights", initializer=init)
            print "generated " + params["name"] + "/weights"

        if not tf.get_variable_scope().reuse:
            weightDecay = tf.mul(tf.nn.l2_loss(var), self._wd,
                                  name='weight_loss')
            tf.add_to_collection('losses', weightDecay)

        return var
项目:StackGAN    作者:hanzhanggit    | 项目源码 | 文件源码
def sample_encoded_context(self, embeddings):
        '''Helper function for init_opt'''
        c_mean_logsigma = self.model.generate_condition(embeddings)
        mean = c_mean_logsigma[0]
        if cfg.TRAIN.COND_AUGMENTATION:
            # epsilon = tf.random_normal(tf.shape(mean))
            epsilon = tf.truncated_normal(tf.shape(mean))
            stddev = tf.exp(c_mean_logsigma[1])
            c = mean + stddev * epsilon

            kl_loss = KL_loss(c_mean_logsigma[0], c_mean_logsigma[1])
        else:
            c = mean
            kl_loss = 0

        return c, cfg.TRAIN.COEFF.KL * kl_loss
项目:StackGAN    作者:hanzhanggit    | 项目源码 | 文件源码
def sample_encoded_context(self, embeddings):
        '''Helper function for init_opt'''
        # Build conditioning augmentation structure for text embedding
        # under different variable_scope: 'g_net' and 'hr_g_net'
        c_mean_logsigma = self.model.generate_condition(embeddings)
        mean = c_mean_logsigma[0]
        if cfg.TRAIN.COND_AUGMENTATION:
            # epsilon = tf.random_normal(tf.shape(mean))
            epsilon = tf.truncated_normal(tf.shape(mean))
            stddev = tf.exp(c_mean_logsigma[1])
            c = mean + stddev * epsilon

            kl_loss = KL_loss(c_mean_logsigma[0], c_mean_logsigma[1])
        else:
            c = mean
            kl_loss = 0
        # TODO: play with the coefficient for KL
        return c, cfg.TRAIN.COEFF.KL * kl_loss
项目:benchmarks    作者:tensorflow    | 项目源码 | 文件源码
def minibatch(self, dataset, subset, use_datasets, cache_data,
                shift_ratio=-1):
    """Get synthetic image batches."""
    del subset, use_datasets, cache_data, shift_ratio
    input_shape = [self.batch_size, self.height, self.width, self.depth]
    images = tf.truncated_normal(
        input_shape,
        dtype=self.dtype,
        stddev=1e-1,
        name='synthetic_images')
    labels = tf.random_uniform(
        [self.batch_size],
        minval=0,
        maxval=dataset.num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    # Note: This results in a H2D copy, but no computation
    # Note: This avoids recomputation of the random values, but still
    #         results in a H2D copy.
    images = tf.contrib.framework.local_variable(images, name='images')
    labels = tf.contrib.framework.local_variable(labels, name='labels')
    if self.num_splits == 1:
      images_splits = [images]
      labels_splits = [labels]
    else:
      images_splits = tf.split(images, self.num_splits, 0)
      labels_splits = tf.split(labels, self.num_splits, 0)
    return images_splits, labels_splits
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
项目:VAE-MF-TensorFlow    作者:arongdari    | 项目源码 | 文件源码
def weight_variable(shape, name):
    initial = tf.truncated_normal(shape, stddev=0.001)
    return tf.Variable(initial, name=name)
项目:lung-cancer-detector    作者:YichenGong    | 项目源码 | 文件源码
def weight_variable(shape, stddev=0.1):
    initial = tf.truncated_normal(shape, stddev=stddev)
    return tf.Variable(initial)
项目:lung-cancer-detector    作者:YichenGong    | 项目源码 | 文件源码
def weight_variable_devonc(shape, stddev=0.1):
    return tf.Variable(tf.truncated_normal(shape, stddev=stddev))
项目:lung-cancer-detector    作者:YichenGong    | 项目源码 | 文件源码
def Weight(shape, name):
    return tf.Variable(name=name + "_Weights", 
                       initial_value=tf.truncated_normal(shape=shape, mean=0, stddev=0.1))
项目:lung-cancer-detector    作者:YichenGong    | 项目源码 | 文件源码
def Weight(shape, name):
    return tf.Variable(name=name + "_Weights", 
                       initial_value=tf.truncated_normal(shape=shape, mean=0, stddev=0.1))
项目:NumpyDL    作者:oujago    | 项目源码 | 文件源码
def initWeight(shape):
    weights = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(weights)


# start with 0.1 so reLu isnt always 0
项目:scientific-paper-summarisation    作者:EdCo95    | 项目源码 | 文件源码
def weight_variable(shape):
    """
    A handy little function to create TensorFlow weight variables.
    :param shape: the dimensions of the variable to be created
    :return: a TensorFlow weight variable ready for training
    """
    variable = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(variable)
项目:deligan    作者:val-iisc    | 项目源码 | 文件源码
def add_final_training_ops(graph, class_count, final_tensor_name,
                           ground_truth_tensor_name):
    """Adds a new softmax and fully-connected layer for training.
    We need to retrain the top layer to identify our new classes, so this function
    adds the right operations to the graph, along with some variables to hold the
    weights, and then sets up all the gradients for the backward pass.
    The set up for the softmax and fully-connected layers is based on:
    https://tensorflow.org/versions/master/tutorials/mnist/beginners/index.html
    Args:
      graph: Container for the existing model's Graph.
      class_count: Integer of how many categories of things we're trying to
      recognize.
      final_tensor_name: Name string for the new final node that produces results.
      ground_truth_tensor_name: Name string of the node we feed ground truth data
      into.
    Returns:
      Nothing.
    """
    bottleneck_tensor = graph.get_tensor_by_name(ensure_name_has_port(
        BOTTLENECK_TENSOR_NAME))
    layer_weights = tf.Variable(
        tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, class_count], stddev=0.001),
        name='final_weights')
    layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
    logits = tf.matmul(bottleneck_tensor, layer_weights,
                       name='final_matmul') + layer_biases
    tf.nn.softmax(logits, name=final_tensor_name)
    ground_truth_placeholder = tf.placeholder(tf.float32,
                                              [None, class_count],
                                              name=ground_truth_tensor_name)
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits, ground_truth_placeholder)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    train_step = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(
        cross_entropy_mean)
    return train_step, cross_entropy_mean

# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py
项目:RickLiuGC    作者:liuruijin17    | 项目源码 | 文件源码
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.01)
    return tf.Variable(initial)
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def weight_variable(shape,name):
    initial = tf.truncated_normal(shape, stddev=1.0 / math.sqrt(float(shape[0])))
    return tf.Variable(initial, name=name)
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def initializeWeights(self):
        shared_sizes = []
        self.weights_shared = []
        self.biases_shared = []
        for i in range(len(self.hidden_sizes_shared)):
            if i==0:
                input_len = self.input_size
            else:
                input_len = self.hidden_sizes_shared[i-1]

            output_len = self.hidden_sizes_shared[i]

            layer_weights = tfnet.weight_variable([input_len, output_len],name='weights' + str(i))
            layer_biases = tfnet.bias_variable([output_len], name='biases' + str(i))

            self.weights_shared.append(layer_weights)
            self.biases_shared.append(layer_biases)
            shared_sizes.append((str(input_len) + "x" + str(output_len), str(output_len)))

        task_initial_w1 = tf.truncated_normal([self.n_tasks,self.hidden_sizes_shared[-1],self.hidden_size_task], stddev=1.0 / math.sqrt(float(self.hidden_sizes_shared[-1])))
        self.task_w1 = tf.Variable(task_initial_w1, name="task_weight1")
        task_initial_b1 = tf.constant(0.1, shape=[self.n_tasks,self.hidden_size_task])
        self.task_b1 = tf.Variable(task_initial_b1, name="task_bias1")

        task_initial_w2 = tf.truncated_normal([self.n_tasks,self.hidden_size_task,self.output_size], stddev=1.0 / math.sqrt(float(self.hidden_size_task)))
        self.task_w2 = tf.Variable(task_initial_w2, name="task_weight2")
        task_initial_b2 = tf.constant(0.1, shape=[self.n_tasks,self.output_size])
        self.task_b2 = tf.Variable(task_initial_b2, name="task_bias2")

        if self.verbose:
            print "Okay, making a neural net with the following structure:"
            print "\tShared:", shared_sizes
            print "\tTask:", tf.shape(self.task_w1), "x", tf.shape(self.task_w2)
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def tf_weight_variable(shape, name):
    """Initializes a tensorflow weight variable with random values 
    centered around 0.
    """
    initial = tf.truncated_normal(shape, stddev=1.0 / math.sqrt(float(shape[0])), dtype=tf.float64)
    return tf.Variable(initial, name=name)
项目:how_to_convert_text_to_images    作者:llSourcell    | 项目源码 | 文件源码
def sample_encoded_context(embeddings, model, bAugmentation=True):
    '''Helper function for init_opt'''
    # Build conditioning augmentation structure for text embedding
    # under different variable_scope: 'g_net' and 'hr_g_net'
    c_mean_logsigma = model.generate_condition(embeddings)
    mean = c_mean_logsigma[0]
    if bAugmentation:
        # epsilon = tf.random_normal(tf.shape(mean))
        epsilon = tf.truncated_normal(tf.shape(mean))
        stddev = tf.exp(c_mean_logsigma[1])
        c = mean + stddev * epsilon
    else:
        c = mean
    return c
项目:how_to_convert_text_to_images    作者:llSourcell    | 项目源码 | 文件源码
def sample_encoded_context(embeddings, model, bAugmentation=True):
    '''Helper function for init_opt'''
    # Build conditioning augmentation structure for text embedding
    # under different variable_scope: 'g_net' and 'hr_g_net'
    c_mean_logsigma = model.generate_condition(embeddings)
    mean = c_mean_logsigma[0]
    if bAugmentation:
        # epsilon = tf.random_normal(tf.shape(mean))
        epsilon = tf.truncated_normal(tf.shape(mean))
        stddev = tf.exp(c_mean_logsigma[1])
        c = mean + stddev * epsilon
    else:
        c = mean
    return c
项目:Kaggle    作者:lawlite19    | 项目源码 | 文件源码
def weight_variable(shape):
    inital = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(inital)
项目:EWC    作者:stokesj    | 项目源码 | 文件源码
def create_variable(shape, name, c=None, sigma=None, trainable=True):
        if sigma:
            initial = tf.truncated_normal(shape, stddev=sigma, name=name)
        else:
            initial = tf.constant(c if c else 0.0, shape=shape, name=name)
        return tf.Variable(initial, trainable=trainable)
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def xavier_normal_dist(shape):
    return tf.truncated_normal(shape, mean=0, stddev=tf.sqrt(3. / shape[-1] + shape[-2]))
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def xavier_normal_dist_conv3d(shape):
    return tf.truncated_normal(shape, mean=0,
                               stddev=tf.sqrt(3. / (tf.reduce_prod(shape[:3]) * tf.reduce_sum(shape[3:]))))
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def convolution_layer_3d(layer_input, filter, strides, padding='SAME'):
    assert len(filter) == 5  # [filter_depth, filter_height, filter_width, in_channels, out_channels]
    assert len(strides) == 5  # must match input dimensions [batch, in_depth, in_height, in_width, in_channels]
    assert padding in ['VALID', 'SAME']
    # w = tf.Variable(initial_value=tf.truncated_normal(shape=filter), name='weights')

    w = tf.Variable(initial_value=xavier_uniform_dist_conv3d(shape=filter), name='weights')

    b = tf.Variable(tf.constant(1.0, shape=[filter[-1]]), name='biases')
    convolution = tf.nn.conv3d(layer_input, w, strides, padding)
    return convolution + b
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def deconvolution_layer_3d(layer_input, filter, output_shape, strides, padding='SAME'):
    assert len(filter) == 5  # [depth, height, width, output_channels, in_channels]
    assert len(strides) == 5  # must match input dimensions [batch, depth, height, width, in_channels]
    assert padding in ['VALID', 'SAME']
    # w = tf.Variable(initial_value=tf.truncated_normal(shape=filter), name='weights')
    w = tf.Variable(initial_value=xavier_uniform_dist_conv3d(shape=filter), name='weights')
    b = tf.Variable(tf.constant(1.0, shape=[filter[-2]]), name='biases')
    deconvolution = tf.nn.conv3d_transpose(layer_input, w, output_shape, strides, padding)
    return deconvolution + b
项目:tf-crnn    作者:solivr    | 项目源码 | 文件源码
def weightVar(shape, mean=0.0, stddev=0.02, name='weights'):
    init_w = tf.truncated_normal(shape=shape, mean=mean, stddev=stddev)
    return tf.Variable(init_w, name=name)
项目:RL_NFSP    作者:Richard-An    | 项目源码 | 文件源码
def weight_variable(self, shape, name):
        initial = tf.truncated_normal(shape, stddev=0.01)
        return tf.get_variable(name=name, initializer=initial, trainable=True)
项目:RL_NFSP    作者:Richard-An    | 项目源码 | 文件源码
def weight_variable(self, shape):
        initial = tf.truncated_normal(shape, stddev=0.01)
        return tf.Variable(initial)
项目:RL_NFSP    作者:Richard-An    | 项目源码 | 文件源码
def weight_variable(self, shape):
        initial = tf.truncated_normal(shape, stddev=0.01)
        return tf.Variable(initial)
项目:RL_NFSP    作者:Richard-An    | 项目源码 | 文件源码
def weight_variable(self, shape, name):
        initial = tf.truncated_normal(shape, stddev=0.01)
        return tf.get_variable(name=name, initializer=initial, trainable=True)
项目:RL_NFSP    作者:Richard-An    | 项目源码 | 文件源码
def weight_variable(self, shape, name):
        initial = tf.truncated_normal(shape, stddev=0.01)
        return tf.get_variable(name=name, initializer=initial, trainable=True)
项目:DeepLearning    作者:STHSF    | 项目源码 | 文件源码
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)
项目:handwritten-sequence-tensorflow    作者:johnsmithm    | 项目源码 | 文件源码
def weight_variable(self,shape,name="v"):
        if self.initializer == "graves" and False:
            initial = tf.truncated_normal_initializer(mean=0., stddev=.075, seed=None, dtype=tf.float32)
        else:
            initial = tf.truncated_normal(shape, stddev=.075)
        return tf.Variable(initial,name=name+"_weight")
项目:agent-trainer    作者:lopespm    | 项目源码 | 文件源码
def _linear_layer(self, input, input_size, output_size, scope_name):
        with tf.variable_scope(scope_name) as scope:
            weights = tf.Variable(name='weights',
                                  initial_value=tf.truncated_normal(shape=[input_size, output_size], stddev=0.1))
            biases = tf.Variable(name='biases', initial_value=tf.constant(value=0.1, shape=[output_size]))
            output = tf.matmul(input, weights) + biases
        return output
项目:cleverhans    作者:tensorflow    | 项目源码 | 文件源码
def _weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def __init__(self, embedding_length):
    self._embedding_length = embedding_length
    self._named_tensors = {}

    for n in xrange(10):
      # Note: the examples only have the numbers 0 through 9 as terminal nodes.
      name = 'terminal_' + str(n)
      self._named_tensors[name] = tf.Variable(
          tf.truncated_normal([embedding_length],
                              dtype=tf.float32,
                              stddev=1),
          name=name)

    self._combiner_weights = {}
    self._loom_ops = {}
    for name in calculator_pb2.CalculatorExpression.OpCode.keys():
      weights_var = tf.Variable(
          tf.truncated_normal([2 * embedding_length, embedding_length],
                              dtype=tf.float32,
                              stddev=1),
          name=name)
      self._combiner_weights[name] = weights_var
      self._loom_ops[name] = CombineLoomOp(2, embedding_length, weights_var)

    self._loom = loom.Loom(
        named_tensors=self._named_tensors,
        named_ops=self._loom_ops)

    self._output = self._loom.output_tensor(
        loom.TypeShape('float32', [embedding_length]))
项目:Supply-demand-forecasting    作者:LevinJ    | 项目源码 | 文件源码
def weight_variable(self, shape):
        """Create a weight variable with appropriate initialization."""
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)