Python tensorflow 模块,scalar_summary() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.scalar_summary()

项目:variational-text-tensorflow    作者:carpedm20    | 项目源码 | 文件源码
def build_model(self):
    self.q = tf.placeholder(tf.float32, [self.reader.vocab_size], name="question")
    self.a = tf.placeholder(tf.float32, [self.reader.vocab_size], name="answer")

    self.build_encoder()
    self.build_decoder()

    # Kullback Leibler divergence
    self.e_loss = -0.5 * tf.reduce_sum(1 + self.log_sigma_sq - tf.square(self.mu) - tf.exp(self.log_sigma_sq))

    # Log likelihood
    self.g_loss = tf.reduce_sum(tf.log(self.p_x_i))

    self.loss = tf.reduce_mean(self.e_loss + self.g_loss)
    self.optim = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(-self.loss)

    _ = tf.scalar_summary("encoder loss", self.e_loss)
    _ = tf.scalar_summary("decoder loss", self.g_loss)
    _ = tf.scalar_summary("loss", self.loss)
项目:ml    作者:hohoins    | 项目源码 | 文件源码
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  # tf.histogram_summary(tensor_name + '/activations', x)
  tf.summary.histogram(tensor_name + '/activations', x)
  # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
  tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:ml    作者:hohoins    | 项目源码 | 文件源码
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  # tf.histogram_summary(tensor_name + '/activations', x)
  tf.summary.histogram(tensor_name + '/activations', x)
  # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
  tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:pointnet    作者:charlesq34    | 项目源码 | 文件源码
def get_loss(pred, label, end_points, reg_weight=0.001):
    """ pred: BxNxC,
        label: BxN, """
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=label)
    classify_loss = tf.reduce_mean(loss)
    tf.scalar_summary('classify loss', classify_loss)

    # Enforce the transformation as orthogonal matrix
    transform = end_points['transform'] # BxKxK
    K = transform.get_shape()[1].value
    mat_diff = tf.matmul(transform, tf.transpose(transform, perm=[0,2,1]))
    mat_diff -= tf.constant(np.eye(K), dtype=tf.float32)
    mat_diff_loss = tf.nn.l2_loss(mat_diff) 
    tf.scalar_summary('mat_loss', mat_diff_loss)

    return classify_loss + mat_diff_loss * reg_weight
项目:how_to_convert_text_to_images    作者:llSourcell    | 项目源码 | 文件源码
def define_summaries(self):
        '''Helper function for init_opt'''
        all_sum = {'g': [], 'd': [], 'hr_g': [], 'hr_d': [], 'hist': []}
        for k, v in self.log_vars:
            if k.startswith('g'):
                all_sum['g'].append(tf.scalar_summary(k, v))
            elif k.startswith('d'):
                all_sum['d'].append(tf.scalar_summary(k, v))
            elif k.startswith('hr_g'):
                all_sum['hr_g'].append(tf.scalar_summary(k, v))
            elif k.startswith('hr_d'):
                all_sum['hr_d'].append(tf.scalar_summary(k, v))
            elif k.startswith('hist'):
                all_sum['hist'].append(tf.histogram_summary(k, v))

        self.g_sum = tf.merge_summary(all_sum['g'])
        self.d_sum = tf.merge_summary(all_sum['d'])
        self.hr_g_sum = tf.merge_summary(all_sum['hr_g'])
        self.hr_d_sum = tf.merge_summary(all_sum['hr_d'])
        self.hist_sum = tf.merge_summary(all_sum['hist'])
项目:DeepLearning    作者:STHSF    | 项目源码 | 文件源码
def compute_cost(self):

        losses = tf.nn.seq2seq.sequence_loss_by_example(
            [tf.reshape(self.pred, [-1], name='reshape_pred')],
            [tf.reshape(self.ys, [-1], name='reshape_target')],
            [tf.ones([self.batch_size * self.n_steps], dtype=tf.float32)],
            average_across_timesteps=True,
            softmax_loss_function=self.ms_error,
            name='losses'
        )

        with tf.name_scope('average_cost'):
            self.cost = tf.div(
                tf.reduce_sum(losses, name='losses_sum'),
                self.batch_size,
                name='average_cost')
            tf.scalar_summary('cost', self.cost)
项目:WassersteinGAN.tensorflow    作者:shekkizh    | 项目源码 | 文件源码
def _gan_loss(self, logits_real, logits_fake, feature_real, feature_fake, use_features=False):
        discriminator_loss_real = self._cross_entropy_loss(logits_real, tf.ones_like(logits_real),
                                                           name="disc_real_loss")

        discriminator_loss_fake = self._cross_entropy_loss(logits_fake, tf.zeros_like(logits_fake),
                                                           name="disc_fake_loss")
        self.discriminator_loss = discriminator_loss_fake + discriminator_loss_real

        gen_loss_disc = self._cross_entropy_loss(logits_fake, tf.ones_like(logits_fake), name="gen_disc_loss")
        if use_features:
            gen_loss_features = tf.reduce_mean(tf.nn.l2_loss(feature_real - feature_fake)) / (self.crop_image_size ** 2)
        else:
            gen_loss_features = 0
        self.gen_loss = gen_loss_disc + 0.1 * gen_loss_features

        tf.scalar_summary("Discriminator_loss", self.discriminator_loss)
        tf.scalar_summary("Generator_loss", self.gen_loss)
项目:squeezenet    作者:mtreml    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op
项目:RFR-solution    作者:baoblackcoal    | 项目源码 | 文件源码
def policy_gradient():
    with tf.variable_scope("policy"):
        params = tf.get_variable("policy_parameters", [4, 2])
        state = tf.placeholder("float", [None, 4])
        actions = tf.placeholder("float", [None, 2])
        advantages = tf.placeholder("float", [None, 1])
        reward_input = tf.placeholder("float")
        episode_reward = tf.get_variable("episode_reward", initializer=tf.constant(0.))
        episode_reward = reward_input
        linear = tf.matmul(state, params)
        probabilities = tf.nn.softmax(linear)
        good_probabilities = tf.reduce_sum(tf.mul(probabilities, actions), reduction_indices=[1])
        eligibility = tf.log(good_probabilities) * advantages
        loss = -tf.reduce_sum(eligibility)
        optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

        tf.scalar_summary("loss", loss)
        tf.scalar_summary("episode_reward", episode_reward)
        return probabilities, state, actions, advantages, optimizer, reward_input, episode_reward
项目:deep-time-reading    作者:felixduvallet    | 项目源码 | 文件源码
def _activation_summary(x):
    """Helper to create summaries for activations.

    Creates a summary that provides a histogram of activations.
    Creates a summary that measure the sparsity of activations.

    Args:
      x: Tensor
    Returns:
      nothing
    """
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
    tf.histogram_summary(tensor_name + '/activations', x)
    tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:deep-time-reading    作者:felixduvallet    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
    """Add summaries for losses.

    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.

    Args:
      total_loss: Total loss from loss().
    Returns:
      loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name + ' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))

    return loss_averages_op
项目:django-corenlp    作者:arunchaganty    | 项目源码 | 文件源码
def log(self, key, val, step_num):
        """Directly log a scalar value to the event file.

        :param string key: a name for the value
        :param val: a float
        :param step_num: the iteration number at which this value was logged
        """
        try:
            ph, summ = self.summaries[key]
        except KeyError:
            # if we haven't defined a variable for this key, define one
            with self.g.as_default():
                ph = tf.placeholder(tf.float32, (), name=key)  # scalar
                summ = tf.scalar_summary(key, ph)
            self.summaries[key] = (ph, summ)

        summary_str = self.sess.run(summ, {ph: val})
        self.summ_writer.add_summary(summary_str, step_num)
        return val
项目:django-corenlp    作者:arunchaganty    | 项目源码 | 文件源码
def log(self, key, val, step_num):
        """Directly log a scalar value to the event file.

        :param string key: a name for the value
        :param val: a float
        :param step_num: the iteration number at which this value was logged
        """
        try:
            ph, summ = self.summaries[key]
        except KeyError:
            # if we haven't defined a variable for this key, define one
            with self.g.as_default():
                ph = tf.placeholder(tf.float32, (), name=key)  # scalar
                summ = tf.scalar_summary(key, ph)
            self.summaries[key] = (ph, summ)

        summary_str = self.sess.run(summ, {ph: val})
        self.summ_writer.add_summary(summary_str, step_num)
        return val
项目:Magic-Pixel    作者:zhwhong    | 项目源码 | 文件源码
def build_model(self):
        self.inputs = tf.placeholder(tf.float32, [self.batch_size, self.input_size, self.input_size, 3], name='real_images')
        # self.inputs = tf.placeholder(tf.float32, [None, self.input_size, self.input_size, 3], name='real_images')

        try:
            self.up_inputs = tf.image.resize_images(self.inputs, self.image_shape[0], self.image_shape[1], tf.image.ResizeMethod.NEAREST_NEIGHBOR)
        except ValueError:
            # newer versions of tensorflow
            self.up_inputs = tf.image.resize_images(self.inputs, [self.image_shape[0], self.image_shape[1]], tf.image.ResizeMethod.NEAREST_NEIGHBOR)

        self.images = tf.placeholder(tf.float32, [self.batch_size] + self.image_shape, name='real_images')
        # self.images = tf.placeholder(tf.float32, [None] + self.image_shape, name='real_images')
        self.sample_images= tf.placeholder(tf.float32, [self.sample_size] + self.image_shape, name='sample_images')
        # self.sample_images = tf.placeholder(tf.float32, [None] + self.image_shape, name='sample_images')

        self.G = self.generator(self.inputs)
        self.G_sum = tf.image_summary("G", self.G)
        self.g_loss = tf.reduce_mean(tf.square(self.images-self.G))
        self.g_loss_sum = tf.scalar_summary("g_loss", self.g_loss)
        t_vars = tf.trainable_variables()
        self.g_vars = [var for var in t_vars if 'g_' in var.name]
        self.saver = tf.train.Saver()
项目:gait-recognition    作者:marian-margeta    | 项目源码 | 文件源码
def _init_summaries(self):
        if self.is_train:
            logdir = os.path.join(SUMMARY_PATH, self.log_name, 'train')

            self.summary_writer = tf.summary.FileWriter(logdir)
            self.summary_writer_by_points = [tf.summary.FileWriter(os.path.join(logdir, 'point_%02d' % i))
                                             for i in range(16)]

            tf.scalar_summary('Average euclidean distance', self.euclidean_dist, collections = [KEY_SUMMARIES])

            for i in range(16):
                tf.scalar_summary('Joint euclidean distance', self.euclidean_dist_per_joint[i],
                                  collections = [KEY_SUMMARIES_PER_JOINT[i]])

            self.create_summary_from_weights()

            self.ALL_SUMMARIES = tf.merge_all_summaries(KEY_SUMMARIES)
            self.SUMMARIES_PER_JOINT = [tf.merge_all_summaries(KEY_SUMMARIES_PER_JOINT[i]) for i in range(16)]
        else:
            logdir = os.path.join(SUMMARY_PATH, self.log_name, 'test')
            self.summary_writer = tf.summary.FileWriter(logdir)
项目:Multi-channel-speech-extraction-using-DNN    作者:zhr1201    | 项目源码 | 文件源码
def loss(self, inf_targets, inf_vads, targets, vads, mtl_fac):
        '''
        Loss definition
        Only speech inference loss is defined and work quite well
        Add VAD cross entropy loss if you want
        '''
        loss_v1 = tf.nn.l2_loss(inf_targets - targets) / self.batch_size
        loss_o = loss_v1
        reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        # ipdb.set_trace()
        loss_v = loss_o + tf.add_n(reg_loss)
        tf.scalar_summary('loss', loss_v)
        # loss_merge = tf.cond(
        #     is_val, lambda: tf.scalar_summary('val_loss_batch', loss_v),
        #     lambda: tf.scalar_summary('loss', loss_v))
        return loss_v, loss_o
        # return tf.reduce_mean(tf.nn.l2_loss(inf_targets - targets))
项目:tfranknet    作者:mzhang001    | 项目源码 | 文件源码
def _setup_training(self):
        """
        Set up a data flow graph for fine tuning
        """
        layer_num = self.layer_num
        act_func = ACTIVATE_FUNC[self.activate_func]
        sigma = self.sigma
        lr = self.learning_rate
        weights = self.weights
        biases = self.biases
        data1, data2 = self.data1, self.data2
        batch_size = self.batch_size
        optimizer = OPTIMIZER[self.optimizer]
        with tf.name_scope("training"):
            s1 = self._obtain_score(data1, weights, biases, act_func, "1")
            s2 = self._obtain_score(data2, weights, biases, act_func, "2")
            with tf.name_scope("cost"):
                sum_cost = tf.reduce_sum(tf.log(1 + tf.exp(-sigma*(s1-s2))))
                self.cost = cost = sum_cost / batch_size
        self.optimize = optimizer(lr).minimize(cost)

        for n in range(layer_num-1):
            tf.histogram_summary("weight"+str(n), weights[n])
            tf.histogram_summary("bias"+str(n), biases[n])
        tf.scalar_summary("cost", cost)
项目:oversight    作者:hebenon    | 项目源码 | 文件源码
def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Nothing.
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(result_tensor, 1), \
        tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.scalar_summary('accuracy', evaluation_step)
  return evaluation_step
项目:facial-emotion-detection-dl    作者:dllatas    | 项目源码 | 文件源码
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.histogram_summary(tensor_name + '/activations', x)
  tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:facial-emotion-detection-dl    作者:dllatas    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op
项目:facial-emotion-detection-dl    作者:dllatas    | 项目源码 | 文件源码
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.histogram_summary(tensor_name + '/activations', x)
  tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:facial-emotion-detection-dl    作者:dllatas    | 项目源码 | 文件源码
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.histogram_summary(tensor_name + '/activations', x)
  tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:facial-emotion-detection-dl    作者:dllatas    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op
项目:tflearn    作者:tflearn    | 项目源码 | 文件源码
def build_summaries():
    episode_reward = tf.Variable(0.)
    scalar_summary("Reward", episode_reward)
    episode_ave_max_q = tf.Variable(0.)
    scalar_summary("Qmax Value", episode_ave_max_q)
    logged_epsilon = tf.Variable(0.)
    scalar_summary("Epsilon", logged_epsilon)
    # Threads shouldn't modify the main graph, so we use placeholders
    # to assign the value of every summary (instead of using assign method
    # in every thread, that would keep creating new ops in the graph)
    summary_vars = [episode_reward, episode_ave_max_q, logged_epsilon]
    summary_placeholders = [tf.placeholder("float")
                            for i in range(len(summary_vars))]
    assign_ops = [summary_vars[i].assign(summary_placeholders[i])
                  for i in range(len(summary_vars))]
    summary_op = merge_all_summaries()
    return summary_placeholders, assign_ops, summary_op
项目:StackGAN    作者:hanzhanggit    | 项目源码 | 文件源码
def define_summaries(self):
        '''Helper function for init_opt'''
        all_sum = {'g': [], 'd': [], 'hr_g': [], 'hr_d': [], 'hist': []}
        for k, v in self.log_vars:
            if k.startswith('g'):
                all_sum['g'].append(tf.scalar_summary(k, v))
            elif k.startswith('d'):
                all_sum['d'].append(tf.scalar_summary(k, v))
            elif k.startswith('hr_g'):
                all_sum['hr_g'].append(tf.scalar_summary(k, v))
            elif k.startswith('hr_d'):
                all_sum['hr_d'].append(tf.scalar_summary(k, v))
            elif k.startswith('hist'):
                all_sum['hist'].append(tf.histogram_summary(k, v))

        self.g_sum = tf.merge_summary(all_sum['g'])
        self.d_sum = tf.merge_summary(all_sum['d'])
        self.hr_g_sum = tf.merge_summary(all_sum['hr_g'])
        self.hr_d_sum = tf.merge_summary(all_sum['hr_d'])
        self.hist_sum = tf.merge_summary(all_sum['hist'])
项目:web_page_classification    作者:yuhui-lin    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
    """Add summaries for losses in CNN model.
    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.
    Args:
        total_loss: Total loss from loss().
    Returns:
        loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name + ' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))

    return loss_averages_op
项目:web_page_classification    作者:yuhui-lin    | 项目源码 | 文件源码
def _activation_summary(self, x):
        """Helper to create summaries for activations.
        Creates a summary that provides a histogram of activations.
        Creates a summary that measure the sparsity of activations.
        Args:
            x: Tensor
        Returns:
            nothing
        """
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        # Error: these summaries cause high classifier error!!!
        # All inputs to node MergeSummary/MergeSummary must be from the same frame.

        # tensor_name = re.sub('%s_[0-9]*/' % "tower", '', x.op.name)
        # tf.histogram_summary(tensor_name + '/activations', x)
        # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:bi-att-flow    作者:allenai    | 项目源码 | 文件源码
def _build_loss(self):
        config = self.config
        JX = tf.shape(self.x)[2]
        M = tf.shape(self.x)[1]
        JQ = tf.shape(self.q)[1]
        loss_mask = tf.reduce_max(tf.cast(self.q_mask, 'float'), 1)
        losses = tf.nn.softmax_cross_entropy_with_logits(
            self.logits, tf.cast(tf.reshape(self.y, [-1, M * JX]), 'float'))
        ce_loss = tf.reduce_mean(loss_mask * losses)
        tf.add_to_collection('losses', ce_loss)
        ce_loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
            self.logits2, tf.cast(tf.reshape(self.y2, [-1, M * JX]), 'float')))
        tf.add_to_collection("losses", ce_loss2)

        self.loss = tf.add_n(tf.get_collection('losses', scope=self.scope), name='loss')
        tf.scalar_summary(self.loss.op.name, self.loss)
        tf.add_to_collection('ema/scalar', self.loss)
项目:sentiment_lstm    作者:wenjiesha    | 项目源码 | 文件源码
def Train(self,
            loss,
            learning_rate,
            clip_value_min,
            clip_value_max,
            name='training'):
    tf.scalar_summary(':'.join([name, loss.op.name]), loss)
    optimizer = tf.train.AdagradOptimizer(learning_rate)
    grads_and_vars = optimizer.compute_gradients(loss)

    clipped_grads_and_vars = [
        (tf.clip_by_value(g, clip_value_min, clip_value_max), v)
        for g, v in grads_and_vars
    ]

    for g, v in clipped_grads_and_vars:
      _ = tf.histogram_summary(':'.join([name, v.name]), v)
      _ = tf.histogram_summary('%s: gradient for %s' % (name, v.name), g)

    train_op = optimizer.apply_gradients(clipped_grads_and_vars)

    return train_op
项目:text-classification2    作者:yuhui-lin    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
    """Add summaries for losses in CNN model.
    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.
    Args:
        total_loss: Total loss from loss().
    Returns:
        loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name + ' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))

    return loss_averages_op
项目:text-classification2    作者:yuhui-lin    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
    """Add summaries for losses in CNN model.
    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.
    Args:
        total_loss: Total loss from loss().
    Returns:
        loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name + ' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))

    return loss_averages_op
项目:Chinese-QA    作者:distantJing    | 项目源码 | 文件源码
def _build_loss(self):
        config = self.config
        JX = tf.shape(self.x)[2]
        M = tf.shape(self.x)[1]
        JQ = tf.shape(self.q)[1]
        loss_mask = tf.reduce_max(tf.cast(self.q_mask, 'float'), 1)
        losses = tf.nn.softmax_cross_entropy_with_logits(
            self.logits, tf.cast(tf.reshape(self.y, [-1, M * JX]), 'float'))
        ce_loss = tf.reduce_mean(loss_mask * losses)
        tf.add_to_collection('losses', ce_loss)
        ce_loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
            self.logits2, tf.cast(tf.reshape(self.y2, [-1, M * JX]), 'float')))
        tf.add_to_collection("losses", ce_loss2)

        self.loss = tf.add_n(tf.get_collection('losses', scope=self.scope), name='loss')
        tf.scalar_summary(self.loss.op.name, self.loss)
        tf.add_to_collection('ema/scalar', self.loss)
项目:dist-dqn    作者:viswanathgs    | 项目源码 | 文件源码
def _init_loss(cls, config, q, expected_q, actions, reg_loss=None,
                 summaries=None):
    """
    Setup the loss function and apply regularization is provided.

    @return: loss_op
    """
    q_masked = tf.reduce_sum(tf.mul(q, actions), reduction_indices=[1])
    loss = tf.reduce_mean(tf.squared_difference(q_masked, expected_q))
    if reg_loss is not None:
      loss += config.reg_param * reg_loss

    if summaries is not None:
      summaries.append(tf.scalar_summary('loss', loss))

    return loss
项目:tensorflow-ram    作者:qingzew    | 项目源码 | 文件源码
def grad(self, loc_mean_t, loc_t, h_t, prob, pred, labels):
        loss1, grads1 = self.grad_reinforcement(loc_mean_t, loc_t, h_t, prob, pred, labels)
        loss2, grads2 = self.grad_supervised(prob, labels)

        loss = (1 - self.lambda_) * loss1 + self.lambda_ * loss2

        grads = []
        for i in xrange(len(grads1)):
            grads.append((1 - self.lambda_) * grads1[i] + self.lambda_ * grads2[i])

        tvars = tf.trainable_variables()
        grads = zip(grads, tvars)

        tf.scalar_summary('loss', loss)
        tf.scalar_summary('loss_reinforcement', loss1)
        tf.scalar_summary('loss_supervised', loss2)

        return loss, grads
项目:tensorflow-ram    作者:qingzew    | 项目源码 | 文件源码
def _activation_summary(self, x):
        """Helper to create summaries for activations.

        Creates a summary that provides a histogram of activations.
        Creates a summary that measure the sparsity of activations.

        Args:
            x: Tensor
        Returns:
            nothing
        """
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        tensor_name = re.sub('%s_[0-9]*/' % 'tower', '', x.op.name)
        tf.histogram_summary(tensor_name + '/activations', x)
        tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:deepmodels    作者:learningsociety    | 项目源码 | 文件源码
def train_model(self, train_anchor_batch, train_pos_batch, train_neg_batch,
                  model_params, train_params):
    # get embedding for all batches.
    all_batch = tf.concat(
        0, [train_anchor_batch, train_pos_batch, train_neg_batch])
    with tf.variable_scope("matcher"):
      all_feats, _ = self.build_model(all_batch, model_params)
      anchor_feats, pos_feats, neg_feats = tf.split(0, 3, all_feats)
    # compute loss.
    triplet_loss = dm_losses.triplet_loss(
        anchor_feats,
        pos_feats,
        neg_feats,
        0.2,
        loss_type=commons.LossType.TRIPLET_L2)
    tf.scalar_summary("losses/triplet_loss", triplet_loss)
    # run training.
    base_model.train_model_given_loss(triplet_loss, None, train_params)

  # TODO (jiefeng): use proper evaluation for matcher and test.
项目:ultrasound-nerve-segmentation-in-tensorflow    作者:loliverhennigh    | 项目源码 | 文件源码
def loss_image(prediction, mask):
  """Calc loss for predition on image of mask.
  Args.
    inputs: prediction image 
    mask: true image 

  Return:
    error: loss value
  """
  print(prediction.get_shape())
  print(mask.get_shape())
  #mask = tf.flatten(mask)
  #prediction = tf.flatten(prediction)
  intersection = tf.reduce_sum(prediction * mask)
  loss = -(2. * intersection + 1.) / (tf.reduce_sum(mask) + tf.reduce_sum(prediction) + 1.)
  tf.scalar_summary('loss', loss)
  return loss
项目:various_residual_networks    作者:yuhui-lin    | 项目源码 | 文件源码
def _activation_summary(self, x):
        """Helper to create summaries for activations.
        Creates a summary that provides a histogram of activations.
        Creates a summary that measure the sparsity of activations.
        Args:
            x: Tensor
        Returns:
            nothing
        """
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        # Error: these summaries cause high classifier error!!!
        # All inputs to node MergeSummary/MergeSummary must be from the same frame.

        # tensor_name = re.sub('%s_[0-9]*/' % "tower", '', x.op.name)
        # tf.histogram_summary(tensor_name + '/activations', x)
        # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:NAF-tensorflow    作者:carpedm20    | 项目源码 | 文件源码
def __init__(self, sess, env_name, model_dir, variables, max_update_per_step, max_to_keep=20):
    self.sess = sess
    self.env_name = env_name
    self.max_update_per_step = max_update_per_step

    self.reset()
    self.max_avg_r = None

    with tf.variable_scope('t'):
      self.t_op = tf.Variable(0, trainable=False, name='t')
      self.t_add_op = self.t_op.assign_add(1)

    self.model_dir = model_dir
    self.saver = tf.train.Saver(variables + [self.t_op], max_to_keep=max_to_keep)
    self.writer = tf.train.SummaryWriter('./logs/%s' % self.model_dir, self.sess.graph)

    with tf.variable_scope('summary'):
      scalar_summary_tags = ['total r', 'avg r', 'avg q', 'avg v', 'avg a', 'avg l']

      self.summary_placeholders = {}
      self.summary_ops = {}

      for tag in scalar_summary_tags:
        self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag.replace(' ', '_'))
        self.summary_ops[tag]  = tf.scalar_summary('%s/%s' % (self.env_name, tag), self.summary_placeholders[tag])
项目:SLAM    作者:sanjeevkumar42    | 项目源码 | 文件源码
def add_conv_layer(self, scope_name, layer_input, filter_size, input_channels,
                       output_channels, padding='SAME', should_init_wb=True):
        with tf.variable_scope(scope_name):
            weights_shape = filter_size + [input_channels, output_channels]
            initial_weights, initial_bias = self.__get_init_params(scope_name, should_init_wb)
            self.total_weights += weights_shape[0] * weights_shape[1] * weights_shape[2] * weights_shape[3]
            self.logger.info('Weight shape:{} for scope:{}'.format(weights_shape, tf.get_variable_scope().name))
            conv_weights = self.__get_variable('weights', weights_shape, tf.float32,
                                               initializer=initial_weights)

            tf.scalar_summary(scope_name + '/weight_sparsity', tf.nn.zero_fraction(conv_weights))
            tf.histogram_summary(scope_name + '/weights', conv_weights)

            conv = tf.nn.conv2d(layer_input, conv_weights,
                                strides=[1, 1, 1, 1], padding=padding)

            conv_biases = self.__get_variable('biases', [output_channels], tf.float32,
                                                         initializer=initial_bias)

            layer_output = tf.nn.relu(tf.nn.bias_add(conv, conv_biases))

            return layer_output
项目:SLAM    作者:sanjeevkumar42    | 项目源码 | 文件源码
def add_activation_summary(x):
    """Helper to create summaries for activations.

    Creates a summary that provides a histogram of activations.
    Creates a summary that measure the sparsity of activations.

    Args:
      x: Tensor
    Returns:
      nothing
    """
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.

    tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
    tf.histogram_summary(tensor_name + '/activations', x)
    tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:SLAM    作者:sanjeevkumar42    | 项目源码 | 文件源码
def add_loss_summaries(total_loss):
    """
    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.

    Args:
      total_loss: Total loss from loss().
    Returns:
      loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(l.op.name +' (raw)', l)
        tf.scalar_summary(l.op.name, loss_averages.average(l))

    return loss_averages_op
项目:SLAM    作者:sanjeevkumar42    | 项目源码 | 文件源码
def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measure the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.histogram_summary(tensor_name + '/activations', x)
  tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
项目:SLAM    作者:sanjeevkumar42    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op
项目:deepSpeech    作者:fordDeepDSP    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
    """Add summaries for losses in deepSpeech model.

    Generates moving average for all losses and associated summaries for
    visualizing the performance of the network.

    Args:
      total_loss: Total loss from loss().
    Returns:
      loss_averages_op: op for generating moving averages of losses.
    """
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss;
    # do the same for the averaged version of the losses.
    for each_loss in losses + [total_loss]:
        # Name each loss as '(raw)' and name the moving average
        # version of the loss as the original loss name.
        tf.scalar_summary(each_loss.op.name + ' (raw)', each_loss)
        tf.scalar_summary(each_loss.op.name, loss_averages.average(each_loss))

    return loss_averages_op
项目:deepSpeech    作者:fordDeepDSP    | 项目源码 | 文件源码
def add_summaries(summaries, learning_rate, grads):
    """ Add summary ops"""

    # Track quantities for Tensorboard display
    summaries.append(tf.scalar_summary('learning_rate', learning_rate))
    # Add histograms for gradients.
    for grad, var in grads:
        if grad is not None:
            summaries.append(
                tf.histogram_summary(var.op.name +
                                     '/gradients', grad))
    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
        summaries.append(tf.histogram_summary(var.op.name, var))

    # Build the summary operation from the last tower summaries.
    summary_op = tf.merge_summary(summaries)
    return summary_op
项目:deep_separation_contraction    作者:edouardoyallon    | 项目源码 | 文件源码
def loss(logits, labels,n_class, scope='loss'):
  with tf.variable_scope(scope):
    # entropy loss
    targets = one_hot_embedding(labels, n_class)
    entropy_loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(logits, targets),
      name='entropy_loss')
    tf.add_to_collection('losses', entropy_loss)
    # weight l2 decay loss
    weight_l2_losses = [tf.nn.l2_loss(o) for o in tf.get_collection('weights')]
    weight_decay_loss = tf.mul(FLAGS.weight_decay, tf.add_n(weight_l2_losses),
      name='weight_decay_loss')
    tf.add_to_collection('losses', weight_decay_loss)
  for var in tf.get_collection('losses'):
    tf.scalar_summary('losses/' + var.op.name, var)
  # total loss
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
项目:deep_separation_contraction    作者:edouardoyallon    | 项目源码 | 文件源码
def loss(logits, labels,n_class, scope='loss'):
  with tf.variable_scope(scope):
    # entropy loss
    targets = one_hot_embedding(labels, n_class)
    entropy_loss = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(logits, targets),
      name='entropy_loss')
    tf.add_to_collection('losses', entropy_loss)
    # weight l2 decay loss
    weight_l2_losses = [tf.nn.l2_loss(o) for o in tf.get_collection('weights')]
    weight_decay_loss = tf.mul(FLAGS.weight_decay, tf.add_n(weight_l2_losses),
      name='weight_decay_loss')
    tf.add_to_collection('losses', weight_decay_loss)
  for var in tf.get_collection('losses'):
    tf.scalar_summary('losses/' + var.op.name, var)
  # total loss
  return tf.add_n(tf.get_collection('losses'), name='total_loss')
项目:deep_separation_contraction    作者:edouardoyallon    | 项目源码 | 文件源码
def add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.
  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.
  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summmary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op
项目:real_time_face_recognition    作者:shanren7    | 项目源码 | 文件源码
def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summmary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(l.op.name +' (raw)', l)
    tf.scalar_summary(l.op.name, loss_averages.average(l))

  return loss_averages_op