Python tensorflow 模块,reset_default_graph() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.reset_default_graph()

项目:lung-cancer-detector    作者:YichenGong    | 项目源码 | 文件源码
def __init__(self, channels=3, n_class=2, cost="cross_entropy", cost_kwargs={}, **kwargs):
        tf.reset_default_graph()

        self.n_class = n_class
        self.summaries = kwargs.get("summaries", True)

        self.x = tf.placeholder("float", shape=[None, None, None, channels])
        self.y = tf.placeholder("float", shape=[None, None, None, n_class])
        self.keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)

        logits, self.variables, self.offset = create_conv_net(self.x, self.keep_prob, channels, n_class, **kwargs)

        self.cost = self._get_cost(logits, cost, cost_kwargs)

        self.gradients_node = tf.gradients(self.cost, self.variables)

        self.cross_entropy = tf.reduce_mean(cross_entropy(tf.reshape(self.y, [-1, n_class]),
                                                          tf.reshape(pixel_wise_softmax_2(logits), [-1, n_class])))

        self.predicter = pixel_wise_softmax_2(logits)
        self.correct_pred = tf.equal(tf.argmax(self.predicter, 3), tf.argmax(self.y, 3))
        self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32))
项目:DeepPath    作者:xwhan    | 项目源码 | 文件源码
def retrain():
    print 'Start retraining'
    tf.reset_default_graph()
    policy_network = PolicyNetwork(scope = 'supervised_policy')

    f = open(relationPath)
    training_pairs = f.readlines()
    f.close()

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, 'models/policy_supervised_' + relation)
        print "sl_policy restored"
        episodes = len(training_pairs)
        if episodes > 300:
            episodes = 300
        REINFORCE(training_pairs, policy_network, episodes)
        saver.save(sess, 'models/policy_retrained' + relation)
    print 'Retrained model saved'
项目:onsager_deep_learning    作者:mborgerding    | 项目源码 | 文件源码
def show_shrinkage(shrink_func,theta,**kwargs):
    tf.reset_default_graph()
    tf.set_random_seed(kwargs.get('seed',1) )

    N = kwargs.get('N',500)
    L = kwargs.get('L',4)
    nsigmas = kwargs.get('sigmas',10)
    shape = (N,L)
    rvar = 1e-4
    r = np.reshape( np.linspace(0,nsigmas,N*L)*math.sqrt(rvar),shape)
    r_ = tfcf(r)
    rvar_ = tfcf(np.ones(L)*rvar)

    xhat_,dxdr_ = shrink_func(r_,rvar_ ,tfcf(theta))

    with tf.Session() as sess:
        sess.run( tf.global_variables_initializer() )
        xhat = sess.run(xhat_)
    import matplotlib.pyplot as plt
    plt.figure(1)
    plt.plot(r.reshape(-1),r.reshape(-1),'y')
    plt.plot(r.reshape(-1),xhat.reshape(-1),'b')
    if kwargs.has_key('title'):
        plt.suptitle(kwargs['title'])
    plt.show()
项目:combine-DT-with-NN-in-RL    作者:Burning-Bear    | 项目源码 | 文件源码
def test_multikwargs():
    tf.reset_default_graph()
    x = tf.placeholder(tf.int32, (), name="x")
    with tf.variable_scope("other"):
        x2 = tf.placeholder(tf.int32, (), name="x")
    z = 3 * x + 2 * x2

    lin = function([x, x2], z, givens={x2: 0})
    with single_threaded_session():
        initialize()
        assert lin(2) == 6
        assert lin(2, 2) == 10
        expt_caught = False
        try:
            lin(x=2)
        except AssertionError:
            expt_caught = True
        assert expt_caught
项目:combine-DT-with-NN-in-RL    作者:Burning-Bear    | 项目源码 | 文件源码
def test_multikwargs():
    tf.reset_default_graph()
    x = tf.placeholder(tf.int32, (), name="x")
    with tf.variable_scope("other"):
        x2 = tf.placeholder(tf.int32, (), name="x")
    z = 3 * x + 2 * x2

    lin = function([x, x2], z, givens={x2: 0})
    with single_threaded_session():
        initialize()
        assert lin(2) == 6
        assert lin(2, 2) == 10
        expt_caught = False
        try:
            lin(x=2)
        except AssertionError:
            expt_caught = True
        assert expt_caught
项目:tf_classification    作者:visipedia    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
项目:tf_classification    作者:visipedia    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Conv2d_13_pointwise']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
项目:tf_classification    作者:visipedia    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v3(inputs, num_classes)
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
项目:tf_classification    作者:visipedia    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_run_feed_dict(self):
    p = self.create_plan(loom_input_tensor=None)
    p.examples = [1] * 4
    self.check_plan(p, [])
    # Test that we don't clobber a better checkpoint with a worse one.
    tf.reset_default_graph()
    self._ClearCachedSession()
    p = self.create_plan(loom_input_tensor=None)
    p.examples = [1] * 4
    p.epochs = 1
    p._loss_total = tf.constant(42.0)
    # We aren't using a managed session, so we need to run this ourselves.
    init_op = tf.global_variables_initializer()
    sv = p.create_supervisor()
    with self.test_session() as sess:
      sess.run(init_op)
      p.run(sv, sess)
      log_str = p.print_file.getvalue()
      self.assertNotIn('new best model saved', log_str)
项目:tflearn_seq2seq    作者:ichuang    | 项目源码 | 文件源码
def test_train_predict2():
    '''
    Test that the embedding_attention model works, with saving and loading of weights
    '''
    import tempfile
    sp = SequencePattern()
    tempdir = tempfile.mkdtemp()
    ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir=tempdir, name="attention")
    tf.reset_default_graph()
    ts2s.train(num_epochs=1, num_points=1000, weights_output_fn=1, weights_input_fn=0)
    assert os.path.exists(ts2s.weights_output_fn)

    tf.reset_default_graph()
    ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir="DATA", name="attention", verbose=1)
    prediction, y = ts2s.predict(Xin=range(10), weights_input_fn=1)
    assert len(prediction==10)

    os.system("rm -rf %s" % tempdir)
项目:tflearn_seq2seq    作者:ichuang    | 项目源码 | 文件源码
def test_train_predict3():
    '''
    Test that a model trained on sequencees of one length can be used for predictions on other sequence lengths
    '''
    import tempfile
    sp = SequencePattern("sorted", in_seq_len=10, out_seq_len=10)
    tempdir = tempfile.mkdtemp()
    ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir=tempdir, name="attention")
    tf.reset_default_graph()
    ts2s.train(num_epochs=1, num_points=1000, weights_output_fn=1, weights_input_fn=0)
    assert os.path.exists(ts2s.weights_output_fn)

    tf.reset_default_graph()
    sp = SequencePattern("sorted", in_seq_len=20, out_seq_len=8)
    tf.reset_default_graph()
    ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir="DATA", name="attention", verbose=1)
    x = np.random.randint(0, 9, 20)
    prediction, y = ts2s.predict(x, weights_input_fn=1)
    assert len(prediction==8)

    os.system("rm -rf %s" % tempdir)
项目:tflearn_seq2seq    作者:ichuang    | 项目源码 | 文件源码
def test_main3():
    '''
    Integration test - training then prediction: attention model
    '''
    import tempfile
    wfn = "tmp_weights.tfl"
    if os.path.exists(wfn):
        os.unlink(wfn)
    arglist = "-e 2 -o tmp_weights.tfl -v -v -v -v -m embedding_attention train 5000"
    arglist = arglist.split(' ')
    tf.reset_default_graph()
    ts2s = CommandLine(arglist=arglist)
    assert os.path.exists(wfn)

    arglist = "-i tmp_weights.tfl -v -v -v -v -m embedding_attention predict 1 2 3 4 5 6 7 8 9 0" 
    arglist = arglist.split(' ')
    tf.reset_default_graph()
    ts2s = CommandLine(arglist=arglist)
    assert len(ts2s.prediction_results[0][0])==10

#-----------------------------------------------------------------------------
项目:rl-attack-detection    作者:yenchenlin    | 项目源码 | 文件源码
def test_multikwargs():
    tf.reset_default_graph()
    x = tf.placeholder(tf.int32, (), name="x")
    with tf.variable_scope("other"):
        x2 = tf.placeholder(tf.int32, (), name="x")
    z = 3 * x + 2 * x2

    lin = function([x, x2], z, givens={x2: 0})
    with single_threaded_session():
        initialize()
        assert lin(2) == 6
        assert lin(2, 2) == 10
        expt_caught = False
        try:
            lin(x=2)
        except AssertionError:
            expt_caught = True
        assert expt_caught
项目:isbi2017-part3    作者:learningtitans    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.initialize_all_variables().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
项目:isbi2017-part3    作者:learningtitans    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v3(inputs, num_classes)
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7c']
      feed_dict = {inputs: input_np}
      tf.initialize_all_variables().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
项目:isbi2017-part3    作者:learningtitans    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.initialize_all_variables().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
项目:chemblnet    作者:jaak-s    | 项目源码 | 文件源码
def test_sgld_sparse(self):
        tf.reset_default_graph()

        z     = tf.Variable(tf.zeros((5, 2)), dtype=tf.float32)
        idx   = tf.placeholder(tf.int32)
        zi    = tf.gather(z, idx)
        zloss = tf.square(zi - [10.0, 5.0])

        sgld = SGLD(learning_rate=0.4)
        train_op_sgld = sgld.minimize(zloss)

        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())

        self.assertTrue(np.alltrue(sess.run(z) == 0.0))

        sess.run(train_op_sgld, feed_dict={idx: 3})
        zh = sess.run(z)
        self.assertTrue(np.alltrue(zh[[0, 1, 2, 4], :] == 0.0))
        self.assertTrue(zh[3, 0] > 0)
项目:chemblnet    作者:jaak-s    | 项目源码 | 文件源码
def test_psgld_sparse(self):
        tf.reset_default_graph()

        z     = tf.Variable(tf.zeros((5, 2)), dtype=tf.float32)
        idx   = tf.placeholder(tf.int32)
        zi    = tf.gather(z, idx)
        zloss = tf.square(zi - [10.0, 5.0])

        psgld = pSGLD(learning_rate=0.4)
        train_op_psgld = psgld.minimize(zloss)

        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())

        self.assertTrue(np.alltrue(sess.run(z) == 0.0))

        sess.run(train_op_psgld, feed_dict={idx: 3})
        zh = sess.run(z)
        self.assertTrue(np.alltrue(zh[[0, 1, 2, 4], :] == 0.0))
        self.assertTrue(zh[3, 0] > 0)
项目:baselines    作者:openai    | 项目源码 | 文件源码
def test_multikwargs():
    tf.reset_default_graph()
    x = tf.placeholder(tf.int32, (), name="x")
    with tf.variable_scope("other"):
        x2 = tf.placeholder(tf.int32, (), name="x")
    z = 3 * x + 2 * x2

    lin = function([x, x2], z, givens={x2: 0})
    with single_threaded_session():
        initialize()
        assert lin(2) == 6
        assert lin(2, 2) == 10
        expt_caught = False
        try:
            lin(x=2)
        except AssertionError:
            expt_caught = True
        assert expt_caught
项目:tensoronspark    作者:liangfengsid    | 项目源码 | 文件源码
def test_save_restore():
    tf.reset_default_graph()
    sess = tf.Session()
    path = '/tmp/tensor_saved_test2'
    meta_path = path + '.meta'

    r = tf.train.import_meta_graph(meta_path)
    r.restore(sess, path)

    s = _get_saver(100)
    s.save(sess, path)


    tf.reset_default_graph()
    sess2 = tf.Session()

    r2 = tf.train.import_meta_graph(meta_path)
    r2.restore(sess2, path)
    s2 = _get_saver(100)
    s2.save(sess2, path)
项目:rl_algorithms    作者:DanielTakeshi    | 项目源码 | 文件源码
def get_session():
    tf.reset_default_graph()
    tf_config = tf.ConfigProto(
        inter_op_parallelism_threads=1,
        intra_op_parallelism_threads=1)

    # This was the default provided in the starter code.
    #session = tf.Session(config=tf_config)

    # Use this if I want to see what is on the GPU.
    #session = tf.Session(config=tf.ConfigProto(log_device_placement=True))

    # Use this for limiting memory allocated for the GPU.
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
    session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

    print("AVAILABLE GPUS: ", get_available_gpus())
    return session
项目:luminoth    作者:tryolabs    | 项目源码 | 文件源码
def setUp(self):
        super(RCNNProposalTest, self).setUp()

        self._num_classes = 3
        self._image_shape = (900, 1440)
        self._config = EasyDict({
            'class_max_detections': 100,
            'class_nms_threshold': 0.6,
            'total_max_detections': 300,
            'min_prob_threshold': 0.0,
        })

        self._equality_delta = 1e-03

        self._shared_model = RCNNProposal(self._num_classes, self._config)
        tf.reset_default_graph()
项目:luminoth    作者:tryolabs    | 项目源码 | 文件源码
def setUp(self):
        super(RCNNTargetTest, self).setUp()

        # We don't care about the class labels or the batch number in most of
        # these tests.
        self._num_classes = 5
        self._placeholder_label = 3.

        self._config = EasyDict({
            'foreground_threshold': 0.5,
            'background_threshold_high': 0.5,
            'background_threshold_low': 0.1,
            'foreground_fraction': 0.5,
            'minibatch_size': 2,
        })
        # We check for a difference smaller than this numbers in our tests
        # instead of checking for exact equality.
        self._equality_delta = 1e-03

        self._shared_model = RCNNTarget(
            self._num_classes, self._config, seed=0
        )
        tf.reset_default_graph()
项目:luminoth    作者:tryolabs    | 项目源码 | 文件源码
def setUp(self):
        self.base_config = EasyDict({
            'dataset': {
                'dir': '',
                'split': 'train',
                'image_preprocessing': {
                    'min_size': 600,
                    'max_size': 1024,
                },
                'data_augmentation': {},
            },
            'train': {
                'num_epochs': 1,
                'batch_size': 1,
                'random_shuffle': False,
                'seed': None,
            }
        })
        tf.reset_default_graph()
项目:vampyre    作者:GAMPTeam    | 项目源码 | 文件源码
def build_graph(self):
        """
        Builds graph
        """

        # Clear the grapht
        tf.reset_default_graph()

        # Create the placeholder for the input
        nx = self.enc_dim[0]
        self.x = tf.placeholder("float", shape=[None, nx], name='x')


        # Builds the various components        
        if self.mode == 'train':
            self.build_enc()
        self.build_dec()
        self.build_loss_fn()

        # Add the summary op
        self.summary_op = tf.summary.merge_all()

        # Create a saver
        self.saver = tf.train.Saver()
项目:tflearn    作者:tflearn    | 项目源码 | 文件源码
def demonstrate_loading_two_instances_of_model1():
    print("="*60 + " Demonstrate loading weights from model1 into two instances of model1 in scopeA and scopeB")
    tf.reset_default_graph()
    with tf.variable_scope("scopeA") as scope:
        m1a = Model1()
        print ("-" * 40 + " Trying to load model1 weights: should fail")
        try:
            m1a.model.load("model1.tfl", weights_only=True)
        except Exception as err:
            print ("Loading failed, with error as expected, because variables are in scopeA")
            print ("error: %s" % str(err))
        print ("-" * 40)

        print ("=" * 60 + " Trying to load model1 weights: should succeed")
        m1a.model.load("model1.tfl", scope_for_restore="scopeA", verbose=True, weights_only=True)

    with tf.variable_scope("scopeB") as scope:
        m1b = Model1()
        m1b.model.load("model1.tfl", scope_for_restore="scopeB", verbose=True, weights_only=True)
    print ("="*60 + " Successfully restored weights to two instances of model1, in different scopes")
项目:tflearn    作者:tflearn    | 项目源码 | 文件源码
def test_train_predict2():
    '''
    Test that the embedding_attention model works, with saving and loading of weights
    '''
    import tempfile
    sp = SequencePattern()
    tempdir = tempfile.mkdtemp()
    ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir=tempdir, name="attention")
    tf.reset_default_graph()
    ts2s.train(num_epochs=1, num_points=1000, weights_output_fn=1, weights_input_fn=0)
    assert os.path.exists(ts2s.weights_output_fn)

    tf.reset_default_graph()
    ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir="DATA", name="attention", verbose=1)
    prediction, y = ts2s.predict(Xin=range(10), weights_input_fn=1)
    assert len(prediction==10)

    os.system("rm -rf %s" % tempdir)
项目:tflearn    作者:tflearn    | 项目源码 | 文件源码
def test_train_predict3():
    '''
    Test that a model trained on sequencees of one length can be used for predictions on other sequence lengths
    '''
    import tempfile
    sp = SequencePattern("sorted", in_seq_len=10, out_seq_len=10)
    tempdir = tempfile.mkdtemp()
    ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir=tempdir, name="attention")
    tf.reset_default_graph()
    ts2s.train(num_epochs=1, num_points=1000, weights_output_fn=1, weights_input_fn=0)
    assert os.path.exists(ts2s.weights_output_fn)

    tf.reset_default_graph()
    sp = SequencePattern("sorted", in_seq_len=20, out_seq_len=8)
    tf.reset_default_graph()
    ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir="DATA", name="attention", verbose=1)
    x = np.random.randint(0, 9, 20)
    prediction, y = ts2s.predict(x, weights_input_fn=1)
    assert len(prediction==8)

    os.system("rm -rf %s" % tempdir)
项目:tflearn    作者:tflearn    | 项目源码 | 文件源码
def test_main2():
    '''
    Integration test - training then prediction
    '''
    import tempfile
    tempdir = tempfile.mkdtemp()
    arglist = "--data-dir %s -e 2 --iter-num=1 -v -v --tensorboard-verbose=1 train 5000" % tempdir
    arglist = arglist.split(' ')
    tf.reset_default_graph()
    ts2s = CommandLine(arglist=arglist)
    wfn = ts2s.weights_output_fn
    assert os.path.exists(wfn)

    arglist = "-i %s predict 1 2 3 4 5 6 7 8 9 0" % wfn
    arglist = arglist.split(' ')
    tf.reset_default_graph()
    ts2s = CommandLine(arglist=arglist)
    assert len(ts2s.prediction_results[0][0])==10

    os.system("rm -rf %s" % tempdir)
项目:tflearn    作者:tflearn    | 项目源码 | 文件源码
def test_main3():
    '''
    Integration test - training then prediction: attention model
    '''
    import tempfile
    wfn = "tmp_weights.tfl"
    if os.path.exists(wfn):
        os.unlink(wfn)
    arglist = "-e 2 -o tmp_weights.tfl -v -v -v -v -m embedding_attention train 5000"
    arglist = arglist.split(' ')
    tf.reset_default_graph()
    ts2s = CommandLine(arglist=arglist)
    assert os.path.exists(wfn)

    arglist = "-i tmp_weights.tfl -v -v -v -v -m embedding_attention predict 1 2 3 4 5 6 7 8 9 0" 
    arglist = arglist.split(' ')
    tf.reset_default_graph()
    ts2s = CommandLine(arglist=arglist)
    assert len(ts2s.prediction_results[0][0])==10

#-----------------------------------------------------------------------------
项目:probabilistic_line_search    作者:ProbabilisticNumerics    | 项目源码 | 文件源码
def set_up_model():
  tf.reset_default_graph()
  X = tf.placeholder(tf.float32, shape=[None, 784])
  y = tf.placeholder(tf.float32, shape=[None, 10])
  W_conv1 = weight_variable([5, 5, 1, 32])
  b_conv1 = bias_variable([32])
  X_image = tf.reshape(X, [-1,28,28,1])
  h_conv1 = tf.nn.relu(conv2d(X_image, W_conv1) + b_conv1)
  h_pool1 = max_pool_2x2(h_conv1)
  W_conv2 = weight_variable([5, 5, 32, 64])
  b_conv2 = bias_variable([64])
  h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
  h_pool2 = max_pool_2x2(h_conv2)
  W_fc1 = weight_variable([7 * 7 * 64, 1024])
  b_fc1 = bias_variable([1024])
  h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
  h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
  W_fc2 = weight_variable([1024, 10])
  b_fc2 = bias_variable([10])
  h_fc2 = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
  losses = -tf.reduce_sum(y*tf.log(h_fc2), reduction_indices=[1])
  return losses, [X, y], [W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2]
项目:probabilistic_line_search    作者:ProbabilisticNumerics    | 项目源码 | 文件源码
def setUp(self):    
    # Set up model
    tf.reset_default_graph()
    X = tf.placeholder(tf.float32, shape=[None, 784])
    y = tf.placeholder(tf.float32, shape=[None, 10])
    W_fc1 = weight_variable([784, 1024])
    b_fc1 = bias_variable([1024])
    h_fc1 = tf.nn.relu(tf.matmul(X, W_fc1) + b_fc1)
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    h_fc2 = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
    losses = -tf.reduce_sum(y*tf.log(h_fc2), reduction_indices=[1])

    self.loss = tf.reduce_mean(losses)
    self.batch_size = tf.cast(tf.gather(tf.shape(losses), 0), tf.float32)
    self.var_list = [W_fc1, b_fc1, W_fc2, b_fc2]
    self.X = X
    self.y = y

    self.sess = tf.Session()
    self.sess.run(tf.initialize_all_variables())

    self.mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
项目:sonnet    作者:deepmind    | 项目源码 | 文件源码
def testModuleInfo_multiple_subgraph(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    dumb(ph_0)
    with tf.name_scope("foo"):
      dumb(ph_0)
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      self.assertEqual(len(sonnet_collection), 1)
      self.assertEqual(len(sonnet_collection[0].connected_subgraphs), 2)
      connected_subgraph_0 = sonnet_collection[0].connected_subgraphs[0]
      connected_subgraph_1 = sonnet_collection[0].connected_subgraphs[1]
      self.assertEqual(connected_subgraph_0.name_scope, "dumb_a")
      self.assertEqual(connected_subgraph_1.name_scope, "foo/dumb_a")
    check()
    _copy_default_graph()
    check()
项目:sonnet    作者:deepmind    | 项目源码 | 文件源码
def testModuleInfo_sparsetensor(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    sparse_tensor = tf.SparseTensor(
        indices=tf.placeholder(dtype=tf.int64, shape=(10, 2,)),
        values=tf.placeholder(dtype=tf.float32, shape=(10,)),
        dense_shape=tf.placeholder(dtype=tf.int64, shape=(2,)))
    dumb(sparse_tensor)
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(
          connected_subgraph.inputs["inputs"], tf.SparseTensor)
      self.assertIsInstance(connected_subgraph.outputs, tf.SparseTensor)
    check()
    _copy_default_graph()
    check()
项目:sonnet    作者:deepmind    | 项目源码 | 文件源码
def testModuleInfo_namedtuple(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    ph_1 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    dumb(DumbNamedTuple(ph_0, ph_1))
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertTrue(
          base_info._is_namedtuple(connected_subgraph.inputs["inputs"]))
      self.assertTrue(base_info._is_namedtuple(connected_subgraph.outputs))
    check()
    _copy_default_graph()
    check()
项目:sonnet    作者:deepmind    | 项目源码 | 文件源码
def testModuleInfo_dict(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a")
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    ph_1 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    dumb({"ph_0": ph_0, "ph_1": ph_1})
    def check():
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(connected_subgraph.inputs["inputs"], dict)
      self.assertIsInstance(connected_subgraph.outputs, dict)
    check()
    _copy_default_graph()
    check()
项目:sonnet    作者:deepmind    | 项目源码 | 文件源码
def testModuleInfo_recursion(self):
    # pylint: disable=not-callable
    tf.reset_default_graph()
    dumb = DumbModule(name="dumb_a", no_nest=True)
    ph_0 = tf.placeholder(dtype=tf.float32, shape=(1, 10,))
    val = {"one": ph_0, "self": None}
    val["self"] = val
    dumb(val)
    def check(check_type):
      sonnet_collection = tf.get_default_graph().get_collection(
          base_info.SONNET_COLLECTION_NAME)
      connected_subgraph = sonnet_collection[0].connected_subgraphs[0]
      self.assertIsInstance(connected_subgraph.inputs["inputs"]["one"],
                            tf.Tensor)
      self.assertIsInstance(
          connected_subgraph.inputs["inputs"]["self"], check_type)
      self.assertIsInstance(connected_subgraph.outputs["one"], tf.Tensor)
      self.assertIsInstance(connected_subgraph.outputs["self"], check_type)
    check(dict)
    _copy_default_graph()
    check(base_info._UnserializableObject)
项目:terngrad    作者:wenwei202    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
项目:terngrad    作者:wenwei202    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v3(inputs, num_classes)
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
项目:terngrad    作者:wenwei202    | 项目源码 | 文件源码
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
项目:Graph-CNN    作者:fps7806    | 项目源码 | 文件源码
def __init__(self, dataset_name, model_name, net_constructor):
        # Initialize all defaults
        self.dataset_name = dataset_name
        self.model_name = model_name
        self.num_iterations = 200
        self.iterations_per_test = 5
        self.display_iter = 5
        self.snapshot_iter = 1000000
        self.train_batch_size = 0
        self.test_batch_size = 0
        self.crop_if_possible = True
        self.debug = False
        self.starter_learning_rate = 0.1
        self.learning_rate_exp = 0.1
        self.learning_rate_step = 1000
        self.reports = {}
        self.silent = False
        self.optimizer = 'momentum'

        self.net_constructor = net_constructor
        self.net = GraphCNNNetwork()
        self.net_desc = GraphCNNNetworkDescription()
        tf.reset_default_graph()

    # print_ext can be disabled through the silent flag
项目:RFHO    作者:lucfra    | 项目源码 | 文件源码
def _check_adam():
    for _mode in HO_MODES[:2]:
        for _model in IMPLEMENTED_MODEL_TYPES[1:2]:
            _model_kwargs = {'dims': [None, 300, 300, None]}
            tf.reset_default_graph()

            # set random seeds!!!!
            np.random.seed(1)
            tf.set_random_seed(1)

            experiment('test_with_model_' + _model,
                       collect_data=False, hyper_iterations=3, mode=_mode, epochs=3,
                       optimizer=rf.AdamOptimizer,
                       optimizer_kwargs={'lr': tf.Variable(.001, name='eta_adam')},
                       model=_model,
                       model_kwargs=_model_kwargs,
                       set_T=100,
                       )
项目:RFHO    作者:lucfra    | 项目源码 | 文件源码
def _check_forward():
    w_100 = []
    for i in range(1):
        for _mode in HO_MODES[0:1]:
            for _model in IMPLEMENTED_MODEL_TYPES[0:2]:
                _model_kwargs = {}  # {'dims': [None, 300, 300, None]}
                tf.reset_default_graph()
                # set random seeds!!!!
                np.random.seed(1)
                tf.set_random_seed(1)

                results = experiment('test_with_model_' + _model, collect_data=False, hyper_iterations=10, mode=_mode,
                                     epochs=None,
                                     model=_model,
                                     model_kwargs=_model_kwargs,
                                     set_T=1000,
                                     synthetic_hypers=None,
                                     hyper_batch_size=100
                                     # optimizer=rf.GradientDescentOptimizer,
                                     # optimizer_kwargs={'lr': tf.Variable(.01, name='eta')}
                                     )
                w_100.append(results[0]['weights'])
    # rf.save_obj(w_100, 'check_forward')
    return w_100
项目:RFHO    作者:lucfra    | 项目源码 | 文件源码
def _check_all_methods():
    for _mode in HO_MODES[:]:
        for _model in IMPLEMENTED_MODEL_TYPES:
            # _model_kwargs = {'dims': [None, 300, 300, None]}
            tf.reset_default_graph()
            # set random seeds!!!!
            np.random.seed(1)
            tf.set_random_seed(1)

            experiment('test_with_model_' + _model, collect_data=False, hyper_iterations=3, mode=_mode,
                       # epochs=3,
                       model=_model,
                       # model_kwargs=_model_kwargs,
                       set_T=100,
                       synthetic_hypers=None,
                       hyper_batch_size=100
                       # optimizer=rf.GradientDescentOptimizer,
                       # optimizer_kwargs={'lr': tf.Variable(.01, name='eta')}
                       )
项目:RFHO    作者:lucfra    | 项目源码 | 文件源码
def _check_cnn():
    print('END')
    for _mode in HO_MODES[2:3]:
        for _model in IMPLEMENTED_MODEL_TYPES[2:3]:
            tf.reset_default_graph()
            np.random.seed(1)
            tf.set_random_seed(1)

            _model_kwargs = {'conv_dims': [[5, 5, 1, 2], [5, 5, 2, 4], [5, 5, 4, 8]],
                             'ffnn_dims': [128, 10]}

            # noinspection PyTypeChecker
            experiment('test_with_model_' + _model, collect_data=False, hyper_iterations=3, mode=_mode,
                       epochs=2,
                       model=_model,
                       model_kwargs=_model_kwargs,
                       set_T=100,
                       synthetic_hypers=None,
                       hyper_batch_size=100,
                       l1=None,
                       l2=None
                       # optimizer=rf.GradientDescentOptimizer,
                       # optimizer_kwargs={'lr': tf.Variable(.01, name='eta')}
                       )
项目:FFS-ANN    作者:GVLABHernandez    | 项目源码 | 文件源码
def load_neural_network(self):

        meanStdInput = pd.read_csv(self.meanStdInputPath, sep = ',').set_index('Unnamed: 0').as_matrix()
        self.meanInput = np.array(meanStdInput[0])
        self.stdInput = np.array(meanStdInput[1])
        meanStdOutput = pd.read_csv(self.meanStdOutputPath, sep = ',').set_index('Unnamed: 0').as_matrix()
        self.meanOutput = np.array(meanStdOutput[0])
        self.stdOutput = np.array(meanStdOutput[1])

        tf.reset_default_graph()

        with tf.Graph().as_default(), tf.Session() as self.sess:

            self.x = tf.placeholder('float32', [None, self.inputSize])  # Input Tensor
            self.y_ = tf.placeholder('float32', [None, self.outputSize])  # Output Tensor
            self.create_NN()
            self.sess.run(tf.global_variables_initializer())
            self.sess = tf.Session(config = tf.ConfigProto(log_device_placement = True))
            saver = tf.train.Saver()
            saver = tf.train.import_meta_graph(self.ANNPath + '.meta')
            saver.restore(self.sess, self.ANNPath)
            print('Artificial Neural Network from: ' + self.saveFolder + ' loaded !')
项目:instacart-basket-prediction    作者:colinmorris    | 项目源码 | 文件源码
def precompute_probs_for_tag(tag, userfold):
  hps = hypers.hps_for_tag(tag, mode=hypers.Mode.inference)
  tf.logging.info('Creating model')
  dat = BasketDataset(hps, userfold)
  model = rnnmodel.RNNModel(hps, dat)
  sess = tf.InteractiveSession()
  # Load pretrained weights
  tf.logging.info('Loading weights')
  utils.load_checkpoint_for_tag(tag, sess)
  # TODO: deal with 'test mode'
  tf.logging.info('Calculating probabilities')
  probmap = get_probmap(model, sess)
  # Hack because of silly reasons.
  if userfold == 'validation_full':
    userfold = 'validation'
  common.save_pdict_for_tag(tag, probmap, userfold)
  sess.close()
  tf.reset_default_graph()
  return probmap
项目:tf_serving_example    作者:Vetal1977    | 项目源码 | 文件源码
def main():
    # preparations
    create_checkpoints_dir()
    utils.download_train_and_test_data()
    trainset, testset = utils.load_data_sets()

    # create real input for the GAN model (its dicriminator) and
    # GAN model itself
    real_size = (32, 32, 3)
    z_size = 100
    learning_rate = 0.0003

    tf.reset_default_graph()
    input_real = tf.placeholder(tf.float32, (None, *real_size), name='input_real')
    net = GAN(input_real, z_size, learning_rate)

    # craete dataset
    dataset = Dataset(trainset, testset)

    # train the model
    batch_size = 128
    epochs = 25
    _, _, _ = train(net, dataset, epochs, batch_size, z_size)
项目:AVSR-Deep-Speech    作者:pandeydivesh15    | 项目源码 | 文件源码
def close(self):
        tf.reset_default_graph()
        self.sess.close()