Python tensorflow 模块,uint8() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.uint8()

项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def parse_example(serialized_example):
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'shape': tf.FixedLenFeature([], tf.string),
            'img_raw': tf.FixedLenFeature([], tf.string),
            'gt_raw': tf.FixedLenFeature([], tf.string),
            'example_name': tf.FixedLenFeature([], tf.string)
        })

    with tf.variable_scope('decoder'):
        shape = tf.decode_raw(features['shape'], tf.int32)
        image = tf.decode_raw(features['img_raw'], tf.float32)
        ground_truth = tf.decode_raw(features['gt_raw'], tf.uint8)
        example_name = features['example_name']

    with tf.variable_scope('image'):
        # reshape and add 0 dimension (would be batch dimension)
        image = tf.expand_dims(tf.reshape(image, shape), 0)
    with tf.variable_scope('ground_truth'):
        # reshape
        ground_truth = tf.cast(tf.reshape(ground_truth, shape[:-1]), tf.float32)
    return image, ground_truth, example_name
项目:benchmarks    作者:tensorflow    | 项目源码 | 文件源码
def preprocess(self, image_buffer, bbox, batch_position):
    """Preprocessing image_buffer as a function of its batch position."""
    if self.train:
      image = train_image(image_buffer, self.height, self.width, bbox,
                          batch_position, self.resize_method, self.distortions,
                          None, summary_verbosity=self.summary_verbosity,
                          distort_color_in_yiq=self.distort_color_in_yiq,
                          fuse_decode_and_crop=self.fuse_decode_and_crop)
    else:
      image = tf.image.decode_jpeg(
          image_buffer, channels=3, dct_method='INTEGER_FAST')
      image = eval_image(image, self.height, self.width, batch_position,
                         self.resize_method,
                         summary_verbosity=self.summary_verbosity)
    # Note: image is now float32 [height,width,3] with range [0, 255]

    # image = tf.cast(image, tf.uint8) # HACK TESTING

    return image
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def make_png_thumbnail(x, n):
    '''
    Input:
        `x`: Tensor, value range=[-1, 1), shape=[n*n, h, w, c]
        `n`: sqrt of the number of images

    Return:
        `tf.string` (bytes) of the PNG. 
        (write these binary directly into a file)
    '''
    with tf.name_scope('MakeThumbnail'):
        _, h, w, c = x.get_shape().as_list()
        x = tf.reshape(x, [n, n, h, w, c])
        x = tf.transpose(x, [0, 2, 1, 3, 4])
        x = tf.reshape(x, [n * h, n * w, c])
        x = x / 2. + .5
        x = tf.image.convert_image_dtype(x, tf.uint8, saturate=True)
        x = tf.image.encode_png(x)
    return x
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def make_png_jet_thumbnail(x, n):
    '''
    Input:
        `x`: Tensor, value range=[-1, 1), shape=[n*n, h, w, c]
        `n`: sqrt of the number of images

    Return:
        `tf.string` (bytes) of the PNG. 
        (write these binary directly into a file)
    '''
    with tf.name_scope('MakeThumbnail'):
        _, h, w, c = x.get_shape().as_list()
        x = tf.reshape(x, [n, n, h, w, c])
        x = tf.transpose(x, [0, 2, 1, 3, 4])
        x = tf.reshape(x, [n * h, n * w, c])
        x = x / 2. + .5
        x = gray2jet(x)
        x = tf.image.convert_image_dtype(x, tf.uint8, saturate=True)
        x = tf.image.encode_png(x)
    return x
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def get_label_queue(self,batch_size):
        tf_labels = tf.convert_to_tensor(self.attr.values, dtype=tf.uint8)#0,1

        with tf.name_scope('label_queue'):
            uint_label=tf.train.slice_input_producer([tf_labels])[0]
        label=tf.to_float(uint_label)

        #All labels, not just those in causal_model
        dict_data={sl:tl for sl,tl in
                   zip(self.label_names,tf.split(label,len(self.label_names)))}


        num_preprocess_threads = max(self.num_worker-3,1)

        data_batch = tf.train.shuffle_batch(
                dict_data,
                batch_size=batch_size,
                num_threads=num_preprocess_threads,
                capacity=self.min_queue_examples + 3 * batch_size,
                min_after_dequeue=self.min_queue_examples,
                )

        return data_batch
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def write_tfrecord(self, img_list, label_list, record_path):
        # write a single tfrecord
        if os.path.exists(record_path):
            print ("%s exists!"%record_path)
            return

        self._check_list()
        print ("write %s"%record_path)
        self._write_info()

        writer = tf.python_io.TFRecordWriter(record_path)
        c = 0
        for imgname,label in zip(img_list,label_list):

            img = Image.open(imgname).resize((self.flags.width, self.flags.height))
            data = np.array(img).astype(np.uint8)
            img,data = self._check_color(img,data)

            example = self._get_example(data,label)
            writer.write(example.SerializeToString())
            c+=1
            if c%LOG_EVERY == 0:
                print ("%d images written to tfrecord"%c)
        writer.close()
        print("writing %s done"%record_path)
项目:tfutils    作者:neuroailab    | 项目源码 | 文件源码
def get_shapes_and_dtypes(data):
    shapes = {}
    dtypes = {}
    for k in data.keys():
        if isinstance(data[k][0], str):
            shapes[k] = []
            dtypes[k] = tf.string
        elif isinstance(data[k][0], np.ndarray):
            shapes[k] = data[k][0].shape
            dtypes[k] = tf.uint8
        elif isinstance(data[k][0], np.bool_):
            shapes[k] = []
            dtypes[k] = tf.string
        else:
            raise TypeError('Unknown data type', type(data[k][0]))
    return shapes, dtypes
项目:unsupervised-2017-cvprw    作者:imatge-upc    | 项目源码 | 文件源码
def __init__(self):
        # Create a single Session to run all image coding calls.
        self._sess = tf.Session()

        # Initializes function that decodes video
        self._video_path = tf.placeholder(dtype=tf.string)
        self._decode_video = decode_video(self._video_path)

        # Initialize function that resizes a frame
        self._resize_video_data = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3])

        # Initialize function to JPEG-encode a frame
        self._raw_frame = tf.placeholder(dtype=tf.uint8, shape=[None, None, 3])
        self._raw_mask  = tf.placeholder(dtype=tf.uint8, shape=[None, None, 1])
        self._encode_frame = tf.image.encode_jpeg(self._raw_frame, quality=100)
        self._encode_mask  = tf.image.encode_png(self._raw_mask)
项目:rbm-ae-tf    作者:Cospel    | 项目源码 | 文件源码
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with tf.gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
项目:TFExperiments    作者:gnperdue    | 项目源码 | 文件源码
def parse_mnist_tfrec(tfrecord, features_shape):
    tfrecord_features = tf.parse_single_example(
        tfrecord,
        features={
            'features': tf.FixedLenFeature([], tf.string),
            'targets': tf.FixedLenFeature([], tf.string)
        }
    )
    features = tf.decode_raw(tfrecord_features['features'], tf.uint8)
    features = tf.reshape(features, features_shape)
    features = tf.cast(features, tf.float32)
    targets = tf.decode_raw(tfrecord_features['targets'], tf.uint8)
    targets = tf.reshape(targets, [])
    targets = tf.one_hot(indices=targets, depth=10, on_value=1, off_value=0)
    targets = tf.cast(targets, tf.float32)
    return features, targets
项目:TFExperiments    作者:gnperdue    | 项目源码 | 文件源码
def parse_mnist_tfrec(tfrecord, name, features_shape, scalar_targs=False):
    tfrecord_features = tf.parse_single_example(
        tfrecord,
        features={
            'features': tf.FixedLenFeature([], tf.string),
            'targets': tf.FixedLenFeature([], tf.string)
        },
        name=name+'_data'
    )
    with tf.variable_scope('features'):
        features = tf.decode_raw(
            tfrecord_features['features'], tf.uint8
        )
        features = tf.reshape(features, features_shape)
        features = tf.cast(features, tf.float32)
    with tf.variable_scope('targets'):
        targets = tf.decode_raw(tfrecord_features['targets'], tf.uint8)
        if scalar_targs:
            targets = tf.reshape(targets, [])
        targets = tf.one_hot(
            indices=targets, depth=10, on_value=1, off_value=0
        )
        targets = tf.cast(targets, tf.float32)
    return features, targets
项目:tf-sr-zoo    作者:MLJejuCamp2017    | 项目源码 | 文件源码
def read_and_decode(filename_queue, batch_size):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    feature = features()
    feature = tf.parse_single_example(
        serialized_example,
        features = feature,
        )
    hr_image = tf.decode_raw(feature['hr_image'], tf.uint8)
    height = tf.cast(feature['height'], tf.int32)
    width = tf.cast(feature['width'], tf.int32)
    print(height)
    image_shape = tf.stack([128, 128,3 ])
    hr_image = tf.reshape(hr_image, image_shape)
    hr_image = tf.image.random_flip_left_right(hr_image)
    hr_image = tf.image.random_contrast(hr_image, 0.5, 1.3)
    hr_images = tf.train.shuffle_batch([hr_image], batch_size = batch_size, capacity = 30,
                                      num_threads = 2,
                                        min_after_dequeue = 10)
    return hr_images
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:cs234_reinforcement_learning    作者:hbghhy    | 项目源码 | 文件源码
def process_state(self, state):
        """
        Processing of state

        State placeholders are tf.uint8 for fast transfer to GPU
        Need to cast it to float32 for the rest of the tf graph.

        Args:
            state: node of tf graph of shape = (batch_size, height, width, nchannels)
                    of type tf.uint8.
                    if , values are between 0 and 255 -> 0 and 1
        """
        state = tf.cast(state, tf.float32)
        state /= self.config.high

        return state
项目:py-noisemaker    作者:aayars    | 项目源码 | 文件源码
def save(tensor, name="noise.png"):
    """
    Save an image Tensor to a file.

    :param Tensor tensor: Image tensor
    :param str name: Filename, ending with .png or .jpg
    :return: None
    """

    tensor = tf.image.convert_image_dtype(tensor, tf.uint8, saturate=True)

    if name.endswith(".png"):
        data = tf.image.encode_png(tensor).eval()

    elif name.endswith(".jpg"):
        data = tf.image.encode_jpeg(tensor).eval()

    else:
        raise ValueError("Filename should end with .png or .jpg")

    with open(name, "wb") as fh:
        fh.write(data)
项目:py-noisemaker    作者:aayars    | 项目源码 | 文件源码
def jpeg_decimate(tensor, shape, iterations=25):
    """
    JPEG decimation with conv2d feedback loop

    :param Tensor tensor:
    :return: Tensor
    """

    jpegged = tensor

    for i in range(iterations):
        jpegged = tf.image.convert_image_dtype(jpegged, tf.uint8)

        data = tf.image.encode_jpeg(jpegged, quality=random.randint(5, 50), x_density=random.randint(50, 500), y_density=random.randint(50, 500))
        jpegged = tf.image.decode_jpeg(data)

        jpegged = tf.image.convert_image_dtype(jpegged, tf.float32, saturate=True)

    return jpegged
项目:dynamic-training-bench    作者:galeone    | 项目源码 | 文件源码
def _maybe_download_and_extract(self):
        """Download and extract the MNIST dataset"""
        data_sets = mnist.read_data_sets(
            self._data_dir,
            dtype=tf.uint8,
            reshape=False,
            validation_size=self._num_examples_per_epoch_for_eval)

        # Convert to Examples and write the result to TFRecords.
        if not tf.gfile.Exists(os.path.join(self._data_dir, 'train.tfrecords')):
            convert_to_tfrecords(data_sets.train, 'train', self._data_dir)

        if not tf.gfile.Exists(
                os.path.join(self._data_dir, 'validation.tfrecords')):
            convert_to_tfrecords(data_sets.validation, 'validation',
                                 self._data_dir)

        if not tf.gfile.Exists(os.path.join(self._data_dir, 'test.tfrecords')):
            convert_to_tfrecords(data_sets.test, 'test', self._data_dir)
项目:dahoam2017    作者:KarimJedda    | 项目源码 | 文件源码
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label_raw': tf.FixedLenFeature([], tf.string),
      })
  image = tf.decode_raw(features['image_raw'], tf.int16)
  image.set_shape([IMAGE_HEIGHT * IMAGE_WIDTH])
  image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
  reshape_image = tf.reshape(image, [IMAGE_HEIGHT, IMAGE_WIDTH, 1])
  label = tf.decode_raw(features['label_raw'], tf.uint8)
  label.set_shape([CHARS_NUM * CLASSES_NUM])
  reshape_label = tf.reshape(label, [CHARS_NUM, CLASSES_NUM])
  return tf.cast(reshape_image, tf.float32), tf.cast(reshape_label, tf.float32)
项目:text-classification2    作者:yuhui-lin    | 项目源码 | 文件源码
def read_and_decode_embedding(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'label': tf.FixedLenFeature(
                [], tf.int64),
            'sequence_raw': tf.FixedLenFeature(
                [], tf.string),
        })
    sequence = features['sequence_raw']

    # preprocess
    s_decode = tf.decode_raw(sequence, tf.int32)
    s_decode.set_shape([FLAGS.embed_length])

    # Convert label from a scalar uint8 tensor to an int32 scalar.
    label = tf.cast(features['label'], tf.int32)

    return s_decode, label
项目:cs234    作者:CalciferZh    | 项目源码 | 文件源码
def process_state(self, state):
        """
        Processing of state

        State placeholders are tf.uint8 for fast transfer to GPU
        Need to cast it to float32 for the rest of the tf graph.

        Args:
            state: node of tf graph of shape = (batch_size, height, width, nchannels)
                    of type tf.uint8.
                    if , values are between 0 and 255 -> 0 and 1
        """
        state = tf.cast(state, tf.float32)
        state /= self.config.high

        return state
项目:terngrad    作者:wenwei202    | 项目源码 | 文件源码
def _extract_images(filename, num_images):
  """Extract the images into a numpy array.

  Args:
    filename: The path to an MNIST images file.
    num_images: The number of images in the file.

  Returns:
    A numpy array of shape [number_of_images, height, width, channels].
  """
  print('Extracting images from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(16)
    buf = bytestream.read(
        _IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS)
    data = np.frombuffer(buf, dtype=np.uint8)
    data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  return data
项目:terngrad    作者:wenwei202    | 项目源码 | 文件源码
def _extract_labels(filename, num_labels):
  """Extract the labels into a vector of int64 label IDs.

  Args:
    filename: The path to an MNIST labels file.
    num_labels: The number of labels in the file.

  Returns:
    A numpy array of shape [number_of_labels]
  """
  print('Extracting labels from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(8)
    buf = bytestream.read(1 * num_labels)
    labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
  return labels
项目:terngrad    作者:wenwei202    | 项目源码 | 文件源码
def ternary_encoder(input_data):
  """Encoding and compressing the signs """
  a = tf.sign(input_data) # -1, 0, 1
  a = tf.add(a,1) # shift -1,0,1 to 0,1,2 (2'b00,2'b01,2'b10)
  a = tf.reshape(a,[-1])
  pad_size = 4 - tf.mod(tf.size(a), 4)
  pad = tf.range(0.0, pad_size)
  a = tf.concat([a, pad], 0)
  a_split1, a_split2, a_split3, a_split4 = tf.split(a,4) # assume the size is dividable by 4

  # encode 4 grads into 1 Byte
  sum_1 = tf.add(a_split1, a_split2*4)
  sum_2 = tf.add(a_split3*16, a_split4*64)
  sum_all = tf.add(sum_1, sum_2)
  encoded = tf.cast(sum_all, tf.uint8)
  return encoded
项目:terngrad    作者:wenwei202    | 项目源码 | 文件源码
def decode_raw(image_buffer, orig_height, orig_width, scope=None):
  """Decode a RAW string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    [orig_height, orig_width]: the size of original image
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  with tf.op_scope([image_buffer], scope, 'decode_raw'):
    # Decode the string as an raw RGB.
    image = tf.decode_raw(image_buffer, tf.uint8)

    image = tf.reshape(image, tf.concat([orig_height,orig_width,[3]],0))

    # After this point, all image pixels reside in [0,1)
    # The various adjust_* ops all require this range for dtype float.
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    return image
项目:terngrad    作者:wenwei202    | 项目源码 | 文件源码
def ternary_encoder(input_data):
  """Encoding and compressing the signs """
  a = tf.sign(input_data) # -1, 0, 1
  a = tf.add(a,1) # shift -1,0,1 to 0,1,2 (2'b00,2'b01,2'b10)
  a = tf.reshape(a,[-1])
  pad_size = 4 - tf.mod(tf.size(a), 4)
  pad = tf.range(0.0, pad_size)
  a = tf.concat([a, pad], 0)
  a_split1, a_split2, a_split3, a_split4 = tf.split(a,4) # assume the size is dividable by 4

  # encode 4 grads into 1 Byte
  sum_1 = tf.add(a_split1, a_split2*4)
  sum_2 = tf.add(a_split3*16, a_split4*64)
  sum_all = tf.add(sum_1, sum_2)
  encoded = tf.cast(sum_all, tf.uint8)
  return encoded
项目:antgo    作者:jianzfb    | 项目源码 | 文件源码
def tf_random_aspect_resize(image, label, low_val=1.0, upper_val=1.5):
  shape = tf.shape(image)
  height = shape[0]
  width = shape[1]

  # 1~1.5
  which_side = tf.to_float(tf.random_uniform([1]))[0]
  multi_val = tf.to_float(tf.random_uniform([1]))[0] * (upper_val - low_val) + low_val

  new_height = tf.cond(which_side > 0.5, lambda: tf.to_float(height), lambda: tf.to_float(height) * multi_val)
  new_width = tf.cond(which_side <= 0.5, lambda: tf.to_float(width), lambda: tf.to_float(width) * multi_val)

  new_height = tf.to_int32(new_height)
  new_width = tf.to_int32(new_width)

  image = tf.expand_dims(image, 0)
  label = tf.expand_dims(label, 0)
  resized_image = tf.image.resize_bilinear(image, [new_height, new_width], align_corners=False)
  resized_image = tf.cast(resized_image, tf.uint8)
  resized_label = tf.image.resize_nearest_neighbor(label, [new_height, new_width], align_corners=False)
  resized_label = tf.cast(resized_label, tf.uint8)
  resized_image = tf.squeeze(resized_image, 0)
  resized_label = tf.squeeze(resized_label, 0)
  return resized_image, resized_label
项目:antgo    作者:jianzfb    | 项目源码 | 文件源码
def tf_aspect_preserving_resize(image, label, smallest_side):
  smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)

  shape = tf.shape(image)
  height = shape[0]
  width = shape[1]
  new_height, new_width = _smallest_size_at_least(height, width, smallest_side)

  new_height = tf.maximum(new_height, smallest_side)
  new_width = tf.maximum(new_width, smallest_side)

  image = tf.expand_dims(image, 0)
  label = tf.expand_dims(label, 0)
  resized_image = tf.image.resize_bilinear(image, [new_height, new_width], align_corners=False)
  resized_image = tf.cast(resized_image, tf.uint8)
  resized_image = tf.squeeze(resized_image, 0)

  resized_label = tf.image.resize_nearest_neighbor(label, [new_height, new_width], align_corners=False)
  resized_label = tf.cast(resized_label, tf.uint8)
  resized_label = tf.squeeze(resized_label, 0)
  return resized_image, resized_label
项目:SpikeFlow    作者:deeperic    | 项目源码 | 文件源码
def _read_pngs_from(path):
  """Reads directory of images.
  Args:
    path: path to the directory

  Returns:
    A list of all images in the directory in the TF format (You need to call sess.run() or .eval() to get the value).
  """
  images = []
  png_files_path = glob.glob(os.path.join(path, '*.[pP][nN][gG]'))
  for filename in png_files_path:
    im = Image.open(filename)
    im = np.asarray(im, np.uint8)

    # get only images name, not path
    image_name = filename.split('/')[-1].split('.')[0]
    images.append([int(image_name), im])

  images = sorted(images, key=lambda image: image[0])

  images_only = [np.asarray(image[1], np.uint8) for image in images]  # Use unint8 or you will be !!!
  images_only = np.array(images_only)

  #print(images_only.shape)
  return images_only
项目:tf_datasets    作者:tmattio    | 项目源码 | 文件源码
def __init__(self):
    # Create a single Session to run all image coding calls.
    self._sess = tf.Session()

    # Initializes function that converts PNG to JPEG data.
    self._png_data = tf.placeholder(dtype=tf.string)
    self._decode_png = tf.image.decode_png(self._png_data, channels=3)

    # Initializes function that decodes RGB JPEG data.
    self._jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._jpeg_data, channels=3)

    # Initializes function that encode RGB JPEG/PNG data.
    self._image = tf.placeholder(dtype=tf.uint8)
    self._encoded_png = tf.image.encode_png(self._image)
    self._encoded_jpeg = tf.image.encode_jpeg(self._image)
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:cnn_picture_gazebo    作者:liuyandong1988    | 项目源码 | 文件源码
def decode_from_tfrecords(filename,num_epoch=None):
    filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#???????????????????????????????????????
    reader=tf.TFRecordReader()
    _,serialized=reader.read(filename_queue)
    example=tf.parse_single_example(serialized,features={
        'height':tf.FixedLenFeature([],tf.int64),
        'width':tf.FixedLenFeature([],tf.int64),
        'nchannel':tf.FixedLenFeature([],tf.int64),
        'image':tf.FixedLenFeature([],tf.string),
        'label':tf.FixedLenFeature([],tf.int64)
    })
    label=tf.cast(example['label'], tf.int32)
    image=tf.decode_raw(example['image'],tf.uint8)
    image=tf.reshape(image,tf.pack([
        tf.cast(example['height'], tf.int32),
        tf.cast(example['width'], tf.int32),
        tf.cast(example['nchannel'], tf.int32)]))
    return image,label
项目:keras_experiments    作者:avolkov1    | 项目源码 | 文件源码
def __init__(self):
    # Create a single Session to run all image coding calls.
    self._sess = tf.Session()

    # Initializes function that converts PNG to JPEG data.
    self._png_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_png(self._png_data, channels=3)
    self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that decodes RGB JPEG data.
    self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)

    # Resize
    self._resize = tf.expand_dims(self._decode_jpeg, 0)
    self._resize = tf.image.resize_bilinear(self._resize, [FLAGS.new_height, FLAGS.new_width])
    self._resize = tf.squeeze(self._resize)
    self._resize = tf.cast(self._resize, tf.uint8)

    self._new_jpeg = tf.image.encode_jpeg(self._resize, format='rgb', quality=FLAGS.jpeg_q,
      progressive=False, optimize_size=True, chroma_downsampling=True)
项目:deepmodels    作者:learningsociety    | 项目源码 | 文件源码
def preprocess(self, inputs):
    """Perform preprocess.

    Args:
      inputs: raw input to the model.
    Returns:
      preprocessed input data.
    """
    preprocess_fn = self.get_preprocess_fn()
    assert inputs.ndim == 3 or inputs.ndim == 4, "invalid image format for preprocessing"
    if inputs.ndim == 3:
      inputs = np.expand_dims(inputs, axis=0)
    with tf.Graph().as_default() as cur_g:
      input_tensor = tf.convert_to_tensor(inputs, dtype=tf.uint8)
      all_inputs = tf.unstack(input_tensor)
      processed_inputs = []
      for cur_input in all_inputs:
        new_input = preprocess_fn(cur_input, self.net_params.input_img_height,
                                  self.net_params.input_img_width)
        processed_inputs.append(new_input)
      new_inputs = tf.stack(processed_inputs)
      with tf.Session(graph=cur_g) as sess:
        processed_inputs = sess.run(new_inputs)
    return processed_inputs
项目:tensorflow-yys    作者:ystyle    | 项目源码 | 文件源码
def read_and_decode(filename, batch_size):
    # ???????????
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)  # ????????
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'img_raw': tf.FixedLenFeature([], tf.string),
        }
    )
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    print('xxxx: ', img.get_shape())
    img = tf.reshape(img, [512, 144, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)
    image_batch, label_batch = tf.train.batch([img, label],
                                              batch_size=batch_size,
                                              num_threads=64,
                                              capacity=2000)
    return image_batch, tf.reshape(label_batch, [batch_size])
项目:DeepLearning    作者:educharlie    | 项目源码 | 文件源码
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with tf.gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
项目:apparent-age-gender-classification    作者:danielyou0230    | 项目源码 | 文件源码
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
项目:apparent-age-gender-classification    作者:danielyou0230    | 项目源码 | 文件源码
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })
        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
项目:apparent-age-gender-classification    作者:danielyou0230    | 项目源码 | 文件源码
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
项目:tf-slim-mnist    作者:mnuke    | 项目源码 | 文件源码
def _extract_images(filename, num_images):
  """Extract the images into a numpy array.

  Args:
    filename: The path to an MNIST images file.
    num_images: The number of images in the file.

  Returns:
    A numpy array of shape [number_of_images, height, width, channels].
  """
  print('Extracting images from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(16)
    buf = bytestream.read(
        _IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS)
    data = np.frombuffer(buf, dtype=np.uint8)
    data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  return data
项目:tf-slim-mnist    作者:mnuke    | 项目源码 | 文件源码
def _extract_labels(filename, num_labels):
  """Extract the labels into a vector of int64 label IDs.

  Args:
    filename: The path to an MNIST labels file.
    num_labels: The number of labels in the file.

  Returns:
    A numpy array of shape [number_of_labels]
  """
  print('Extracting labels from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(8)
    buf = bytestream.read(1 * num_labels)
    labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
  return labels
项目:deep-RL-DQN-tensorflow    作者:ZidanMusk    | 项目源码 | 文件源码
def __init__(self):

        self.history = StateProcessorSetting.history_length
        self.dims = StateProcessorSetting.observation_dims
        pass

        #get current,prev frame, set by env
        with tf.variable_scope('input', reuse =True):
            self.cur_frame = tf.get_variable('cur_frame',dtype = tf.uint8)
            self.prev_frame = tf.get_variable('prev_frame',dtype = tf.uint8)

        with tf.variable_scope('input'):
            maxOf2 = tf.maximum(tf.to_float(self.cur_frame), tf.to_float(self.prev_frame))
            toGray = tf.expand_dims(tf.image.rgb_to_grayscale(maxOf2), 0)
            resize = tf.image.resize_bilinear(toGray, self.dims, align_corners=None, name='observation')
            self.observe = tf.div(tf.squeeze(resize), 255.0) 

            self.state = tf.get_variable(name = 'state', shape = [self.dims[0],self.dims[1],self.history], dtype = tf.float32,initializer = tf.constant_initializer(0.0),trainable = False)
            self.to_stack = tf.expand_dims(self.observe, 2)
            self.f3, self.f2, self.f1, _ = tf.split(2, self.history, self.state)  # each is 84x84x1
            self.concat = tf.concat(2, [self.to_stack, self.f3, self.f2, self.f1], name='concat')
            self.updateState = self.state.assign(self.concat)
项目:hart    作者:akosiorek    | 项目源码 | 文件源码
def get_data(img_folder, label_folder, train_fraction, img_size,
             train_timesteps=4, test_timesteps=4, batch_size=1, sample_objects=False, n_threads=3,
             in_memory=False, which_seqs=None, truncated_threshold=2., occluded_threshold=3., depth_folder=None,
             storage_dtype=tf.uint8, mirror=False, reverse=False, bbox_scale=.5):
    kitti = KittiTrackingParser(img_folder, label_folder, presence=True, id=False, cls=False,
                                truncated_threshold=truncated_threshold, occluded_threshold=occluded_threshold)

    train, test = split_sequence_dict(kitti.data_dict, train_fraction)

    def make_store(name, d, timesteps, n_threads, mirror=False, reverse=False):
        s = KittiStore(d, timesteps, img_size, batch_size,
                       sample_objects=sample_objects, which_seqs=which_seqs, n_threads=n_threads,
                       in_memory=in_memory, depth_folder=depth_folder, storage_dtype=storage_dtype,
                       mirror=mirror, reverse=reverse, bbox_scale=bbox_scale, name=name)
        return s

    train_store = make_store('train', train, train_timesteps, n_threads, mirror, reverse)
    test_store = make_store('test', test, test_timesteps, (n_threads // 2) + 1)

    return train_store, train_store.get_minibatch(), test_store, test_store.get_minibatch()
项目:tensorflow_yolo2    作者:wenxichen    | 项目源码 | 文件源码
def _extract_images(filename, num_images):
  """Extract the images into a numpy array.

  Args:
    filename: The path to an MNIST images file.
    num_images: The number of images in the file.

  Returns:
    A numpy array of shape [number_of_images, height, width, channels].
  """
  print('Extracting images from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(16)
    buf = bytestream.read(
        _IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS)
    data = np.frombuffer(buf, dtype=np.uint8)
    data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  return data
项目:tensorflow_yolo2    作者:wenxichen    | 项目源码 | 文件源码
def _extract_labels(filename, num_labels):
  """Extract the labels into a vector of int64 label IDs.

  Args:
    filename: The path to an MNIST labels file.
    num_labels: The number of labels in the file.

  Returns:
    A numpy array of shape [number_of_labels]
  """
  print('Extracting labels from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(8)
    buf = bytestream.read(1 * num_labels)
    labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
  return labels
项目:facerecognition    作者:guoxiaolu    | 项目源码 | 文件源码
def read_and_augment_data(image_list, label_list, image_size, batch_size, max_nrof_epochs, 
        random_crop, random_flip, random_rotate, nrof_preprocess_threads, shuffle=True):

    images = ops.convert_to_tensor(image_list, dtype=tf.string)
    labels = ops.convert_to_tensor(label_list, dtype=tf.int32)

    # Makes an input queue
    input_queue = tf.train.slice_input_producer([images, labels],
        num_epochs=max_nrof_epochs, shuffle=shuffle)

    images_and_labels = []
    for _ in range(nrof_preprocess_threads):
        image, label = read_images_from_disk(input_queue)
        if random_rotate:
            image = tf.py_func(random_rotate_image, [image], tf.uint8)
        if random_crop:
            image = tf.random_crop(image, [image_size, image_size, 3])
        else:
            image = tf.image.resize_image_with_crop_or_pad(image, image_size, image_size)
        if random_flip:
            image = tf.image.random_flip_left_right(image)
        #pylint: disable=no-member
        image.set_shape((image_size, image_size, 3))
        image = tf.image.per_image_standardization(image)
        images_and_labels.append([image, label])

    image_batch, label_batch = tf.train.batch_join(
        images_and_labels, batch_size=batch_size,
        capacity=4 * nrof_preprocess_threads * batch_size,
        allow_smaller_final_batch=True)

    return image_batch, label_batch
项目:facerecognition    作者:guoxiaolu    | 项目源码 | 文件源码
def to_rgb(img):
    w, h = img.shape
    ret = np.empty((w, h, 3), dtype=np.uint8)
    ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
    return ret
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames