Python tensorflow 模块,Summary() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.Summary()

项目:attend_infer_repeat    作者:akosiorek    | 项目源码 | 文件源码
def log_values(writer, itr, tags=None, values=None, dict=None):

    if dict is not None:
        assert tags is None and values is None
        tags = dict.keys()
        values = dict.values()
    else:

        if not nest.is_sequence(tags):
            tags, values = [tags], [values]

        elif len(tags) != len(values):
            raise ValueError('tag and value have different lenghts:'
                             ' {} vs {}'.format(len(tags), len(values)))

    for t, v in zip(tags, values):
        summary = tf.Summary.Value(tag=t, simple_value=v)
        summary = tf.Summary(value=[summary])
        writer.add_summary(summary, itr)
项目:ResNeXt-DenseNet    作者:D-X-Y    | 项目源码 | 文件源码
def image_summary(self, tag, images, step):
    """Log a list of images."""

    img_summaries = []
    for i, img in enumerate(images):
      # Write the image to a string
      try:
        s = StringIO()
      except:
        s = BytesIO()
      scipy.misc.toimage(img).save(s, format="png")

      # Create an Image object
      img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
                                 height=img.shape[0],
                                 width=img.shape[1])
      # Create a Summary value
      img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))

    # Create and write Summary
    summary = tf.Summary(value=img_summaries)
    self.writer.add_summary(summary, step)
项目:deep-text-corrector    作者:andabi    | 项目源码 | 文件源码
def image_summary(self, tag, images, step):
        """Log a list of images."""

        img_summaries = []
        for i, img in enumerate(images):
            # Write the image to a string
            try:
                s = StringIO()
            except:
                s = BytesIO()
            scipy.misc.toimage(img).save(s, format="png")

            # Create an Image object
            img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
                                       height=img.shape[0],
                                       width=img.shape[1])
            # Create a Summary value
            img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))

        # Create and write Summary
        summary = tf.Summary(value=img_summaries)
        self.writer.add_summary(summary, step)
项目:inferno    作者:inferno-pytorch    | 项目源码 | 文件源码
def log_images(self, tag, images, step):
        """Logs a list of images."""

        image_summaries = []
        for image_num, image in enumerate(images):
            # Write the image to a string
            try:
                # Python 2.7
                s = StringIO()
                toimage(image).save(s, format="png")
            except TypeError:
                # Python 3.X
                s = BytesIO()
                toimage(image).save(s, format="png")
            # Create an Image object
            img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
                                       height=image.shape[0],
                                       width=image.shape[1])
            # Create a Summary value
            image_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, image_num),
                                                    image=img_sum))

        # Create and write Summary
        summary = tf.Summary(value=image_summaries)
        self.writer.add_summary(summary, step)
项目:CartPole-v0    作者:hmtai6    | 项目源码 | 文件源码
def log(self, rewards, v_l, p_l, e_l, g_n, v_n, mean_advantages_m):
        print(str(self.name), " episode_count", self.episode_count)
        summary = tf.Summary()
        summary.value.add(tag='Perf/Reward', simple_value=float(rewards))
#        summary.value.add(tag='Perf/Length', simple_value=float(mean_length))
#        summary.value.add(tag='Perf/Value', simple_value=float(mean_value))
        summary.value.add(tag='Losses/Value Loss', simple_value=float(v_l))
        summary.value.add(tag='Losses/Policy Loss', simple_value=float(p_l))
        summary.value.add(tag='Losses/Entropy', simple_value=float(e_l))
        summary.value.add(tag='Losses/Grad Norm', simple_value=float(g_n))
        summary.value.add(tag='Losses/Var Norm', simple_value=float(v_n))
        summary.value.add(tag='Losses/mean_advantages_m', simple_value=float(mean_advantages_m))
        self.summary_writer.add_summary(summary, self.episode_count)

        self.summary_writer.flush()
        pass
项目:pytorch-tutorial    作者:yunjey    | 项目源码 | 文件源码
def image_summary(self, tag, images, step):
        """Log a list of images."""

        img_summaries = []
        for i, img in enumerate(images):
            # Write the image to a string
            try:
                s = StringIO()
            except:
                s = BytesIO()
            scipy.misc.toimage(img).save(s, format="png")

            # Create an Image object
            img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
                                       height=img.shape[0],
                                       width=img.shape[1])
            # Create a Summary value
            img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))

        # Create and write Summary
        summary = tf.Summary(value=img_summaries)
        self.writer.add_summary(summary, step)
项目:chi    作者:rmst    | 项目源码 | 文件源码
def relpath(name, scope_name):
  m = scope_name + '/'
  end = ':0'
  if not (name.startswith(m) and name.endswith(end)):
    raise Exception("'{}' should start with '{}' and end with {}.".format(name, m, end))

  return name[len(m):-len(end)]


# def get_value(var):
#   return var.eval(session=fu.get_session())
#
#
# def set_value(var, value):
#   var.initializer.run({var.initial_value: value}, fu.get_session())


# class SummaryWriter:
#   def __init__(self, tf_summary_writer):
#     self.writer = tf_summary_writer
#
#   def write_scalar(self, tag, val):
#     s = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=val)])
#     self.writer.add_summary(s, self.t)
项目:nec_tensorflow    作者:toth-adam    | 项目源码 | 文件源码
def _tensorboard_summary_writer(self, batch_total_loss):
        # if self.global_step == self.optimization_start:
        if self.create_list_for_total_losses:
            self.create_list_for_total_losses = False
            self._loss_list = []
            self._mean_size = 0

        self._loss_list.append(batch_total_loss)
        self._mean_size += 1
        if self._mean_size % 10 == 0:
            mean_total_loss = np.mean(self._loss_list)
            summary = tf.Summary()
            summary.value.add(tag='Total Loss', simple_value=float(mean_total_loss))
            self.summary_writer.add_summary(summary, self.global_step)
            self.summary_writer.flush()
            self._loss_list = []
            self._mean_size = 0
项目:faceNet_RealTime    作者:jack55436001    | 项目源码 | 文件源码
def save_variables_and_metagraph(sess, saver, summary_writer, model_dir, model_name, step):
    # Save the model checkpoint
    print('Saving variables')
    start_time = time.time()
    checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % model_name)
    saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False)
    save_time_variables = time.time() - start_time
    print('Variables saved in %.2f seconds' % save_time_variables)
    metagraph_filename = os.path.join(model_dir, 'model-%s.meta' % model_name)
    save_time_metagraph = 0  
    if not os.path.exists(metagraph_filename):
        print('Saving metagraph')
        start_time = time.time()
        saver.export_meta_graph(metagraph_filename)
        save_time_metagraph = time.time() - start_time
        print('Metagraph saved in %.2f seconds' % save_time_metagraph)
    summary = tf.Summary()
    #pylint: disable=maybe-no-member
    summary.value.add(tag='time/save_variables', simple_value=save_time_variables)
    summary.value.add(tag='time/save_metagraph', simple_value=save_time_metagraph)
    summary_writer.add_summary(summary, step)
项目:faceNet_RealTime    作者:jack55436001    | 项目源码 | 文件源码
def save_variables_and_metagraph(sess, saver, summary_writer, model_dir, model_name, step):
    # Save the model checkpoint
    print('Saving variables')
    start_time = time.time()
    checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % model_name)
    saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False)
    save_time_variables = time.time() - start_time
    print('Variables saved in %.2f seconds' % save_time_variables)
    metagraph_filename = os.path.join(model_dir, 'model-%s.meta' % model_name)
    save_time_metagraph = 0  
    if not os.path.exists(metagraph_filename):
        print('Saving metagraph')
        start_time = time.time()
        saver.export_meta_graph(metagraph_filename)
        save_time_metagraph = time.time() - start_time
        print('Metagraph saved in %.2f seconds' % save_time_metagraph)
    summary = tf.Summary()
    #pylint: disable=maybe-no-member
    summary.value.add(tag='time/save_variables', simple_value=save_time_variables)
    summary.value.add(tag='time/save_metagraph', simple_value=save_time_metagraph)
    summary_writer.add_summary(summary, step)
项目:cifar-10-cnn    作者:BIGBALLON    | 项目源码 | 文件源码
def run_testing(sess,ep):
    acc = 0.0
    loss = 0.0
    pre_index = 0
    add = 1000
    for it in range(10):
        batch_x = test_x[pre_index:pre_index+add]
        batch_y = test_y[pre_index:pre_index+add]
        pre_index = pre_index + add
        loss_, acc_  = sess.run([cross_entropy,accuracy],feed_dict={x:batch_x, y_:batch_y, keep_prob: 1.0, train_flag: False})
        loss += loss_ / 10.0
        acc += acc_ / 10.0
    summary = tf.Summary(value=[tf.Summary.Value(tag="test_loss", simple_value=loss), 
                            tf.Summary.Value(tag="test_accuracy", simple_value=acc)])
    return acc, loss, summary


# ========================================================== #
# ?? main()
# Training and Testing 
# Save train/teset loss and acc for visualization
# Save Model in ./model
# ========================================================== #
项目:cifar-10-cnn    作者:BIGBALLON    | 项目源码 | 文件源码
def run_testing(sess,ep):
    acc = 0.0
    loss = 0.0
    pre_index = 0
    add = 1000
    for it in range(10):
        batch_x = test_x[pre_index:pre_index+add]
        batch_y = test_y[pre_index:pre_index+add]
        pre_index = pre_index + add
        loss_, acc_  = sess.run([cross_entropy,accuracy],feed_dict={x:batch_x, y_:batch_y, keep_prob: 1.0, train_flag: False})
        loss += loss_ / 10.0
        acc += acc_ / 10.0
    summary = tf.Summary(value=[tf.Summary.Value(tag="test_loss", simple_value=loss), 
                            tf.Summary.Value(tag="test_accuracy", simple_value=acc)])
    return acc, loss, summary


# ========================================================== #
# ?? main()
# Training and Testing 
# Save train/teset loss and acc for visualization
# Save Model in ./model
# ========================================================== #
项目:hart    作者:akosiorek    | 项目源码 | 文件源码
def log_values(writer, itr, tags=None, values=None, dict=None):

    if dict is not None:
        assert tags is None and values is None
        tags = dict.keys()
        values = dict.values()
    else:

        if not nest.is_sequence(tags):
            tags, values = [tags], [values]

        elif len(tags) != len(values):
            raise ValueError('tag and value have different lenghts:'
                             ' {} vs {}'.format(len(tags), len(values)))

    for t, v in zip(tags, values):
        summary = tf.Summary.Value(tag=t, simple_value=v)
        summary = tf.Summary(value=[summary])
        writer.add_summary(summary, itr)
项目:wide-deep-cnn    作者:DaniUPC    | 项目源码 | 文件源码
def write_summary(self, value, writer, step):
        # Check lengths are consistent
        names = self.define_names()
        value = np.squeeze(value)
        if len(value) != len(names):
            raise RuntimeError('Provided list of values is not consistent '
                               + ' with bins defined.')
        # Store each summary independently
        for i, n in enumerate(names):
            summ_name = self.interval_name(names[i])
            summ_tag = '/'.join([self.get_label(), summ_name])
            summ = tf.Summary(
                value=[tf.Summary.Value(tag=summ_tag,
                                        simple_value=float(value[i]))]
            )
            writer.add_summary(summ, step)
项目:wide-deep-cnn    作者:DaniUPC    | 项目源码 | 文件源码
def test_run(self, session, summary_ops, step, data_mode, log=True):
        """ Runs an evaluation step
        Args:
            session: Tensorflow session
            summary_ops: Summary operations for Tensorboard
            step: Step number to assign to the run
            data_mode: Evaluation mode (validation or testing)
            log: Whether to log step
        """
        run = self._run(session=session,
                        summary_ops=summary_ops,
                        is_training=False)
        run.step = step
        if log:
            run.log('Evaluation {}'.format(str(data_mode)))
        return run
项目:tfutils    作者:lmb-freiburg    | 项目源码 | 文件源码
def add_summary_simple_value(writer, tag, step, simple_value):
    """Adds an event to the writer

    writer: tf.summary.FileWriter

    tag: str
        tag for the value

    step: int
        the global step

    simple_value: float or int
        A simple scalar float value
    """
    s = tf.Summary()
    s.value.extend([tf.Summary.Value(tag=tag,simple_value=simple_value)])
    writer.add_summary(s, global_step=step)
项目:crayon    作者:torrvision    | 项目源码 | 文件源码
def tb_add_histogram(experiment, name, wall_time, step, histo):
  # Tensorflow does not support key being unicode
  histo_string = {}
  for k,v in histo.items():
    histo_string[str(k)] = v
  histo = histo_string

  writer = tb_get_xp_writer(experiment)
  summary = tf.Summary(value=[
      tf.Summary.Value(tag=name, histo=histo),
  ])
  event = tf.Event(wall_time=wall_time, step=step, summary=summary)
  writer.add_event(event)
  writer.flush()
  tb_modified_xp(experiment, modified_type="histograms", wall_time=wall_time)

# Perform requests to tensorboard http api
项目:Attention-DQN    作者:chasewind007    | 项目源码 | 文件源码
def save_scalar(step, name, value, writer):
    """Save a scalar value to tensorboard.
      Parameters
      ----------
      step: int
        Training step (sets the position on x-axis of tensorboard graph.
      name: str
        Name of variable. Will be the name of the graph in tensorboard.
      value: float
        The value of the variable at this step.
      writer: tf.FileWriter
        The tensorboard FileWriter instance.
      """
    summary = tf.Summary()
    summary_value = summary.value.add()
    summary_value.simple_value = float(value)
    summary_value.tag = name
    writer.add_summary(summary, step)
项目:Attention-DQN    作者:chasewind007    | 项目源码 | 文件源码
def save_scalar(step, name, value, writer):
    """Save a scalar value to tensorboard.
      Parameters
      ----------
      step: int
        Training step (sets the position on x-axis of tensorboard graph.
      name: str
        Name of variable. Will be the name of the graph in tensorboard.
      value: float
        The value of the variable at this step.
      writer: tf.FileWriter
        The tensorboard FileWriter instance.
      """
    summary = tf.Summary()
    summary_value = summary.value.add()
    summary_value.simple_value = float(value)
    summary_value.tag = name
    writer.add_summary(summary, step)
项目:Attention-DQN    作者:chasewind007    | 项目源码 | 文件源码
def save_scalar(step, name, value, writer):
    """Save a scalar value to tensorboard.
      Parameters
      ----------
      step: int
        Training step (sets the position on x-axis of tensorboard graph.
      name: str
        Name of variable. Will be the name of the graph in tensorboard.
      value: float
        The value of the variable at this step.
      writer: tf.FileWriter
        The tensorboard FileWriter instance.
      """
    summary = tf.Summary()
    summary_value = summary.value.add()
    summary_value.simple_value = float(value)
    summary_value.tag = name
    writer.add_summary(summary, step)
项目:devise-keras    作者:priyamtejaswin    | 项目源码 | 文件源码
def log_images(self, tag, images, step):
        """Logs a list of images."""

        im_summaries = []
        for nr, img in enumerate(images):
            # Write the image to a string
            s = StringIO()
            plt.imsave(s, img, format='png')

            # Create an Image object
            img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
                                       height=img.shape[0],
                                       width=img.shape[1])
            # Create a Summary value
            im_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, nr),
                                                 image=img_sum))

        # Create and write Summary
        summary = tf.Summary(value=im_summaries)
        self.writer.add_summary(summary, step)
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def MakeSummary(name, value):
  """Creates a tf.Summary proto with the given name and value."""
  summary = tf.Summary()
  val = summary.value.add()
  val.tag = str(name)
  val.simple_value = float(value)
  return summary
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def MakeSummary(name, value):
  """Creates a tf.Summary proto with the given name and value."""
  summary = tf.Summary()
  val = summary.value.add()
  val.tag = str(name)
  val.simple_value = float(value)
  return summary
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def MakeSummary(name, value):
  """Creates a tf.Summary proto with the given name and value."""
  summary = tf.Summary()
  val = summary.value.add()
  val.tag = str(name)
  val.simple_value = float(value)
  return summary
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def write_summaries(self, X, y, label, step, summary_writer=None):
        if not X:
            return
        y_pred, loss = self.predict_proba_with_loss(X, y)
        metrics = classification_metrics(y, y_pred, self.threshold)
        metrics['loss'] = loss
        if summary_writer is not None:
            summary = tf.Summary()
            for key, value in metrics.items():
                summary.value.add(tag="metrics/{}".format(key), simple_value=float(value))
            if not self.summary_tensors:
                self.summary_tensors["positive_predictions_input"] = tf.placeholder(
                    tf.float32, [None], "positive_predictions_input")
                self.summary_tensors["positive_predictions"] = tf.summary.histogram(
                    "positive_predictions", self.summary_tensors["positive_predictions_input"])
                self.summary_tensors["negative_predictions_input"] = tf.placeholder(
                    tf.float32, [None], "negative_predictions_input")
                self.summary_tensors["negative_predictions"] = tf.summary.histogram(
                    "negative_predictions", self.summary_tensors["negative_predictions_input"])
            summary_writer.add_summary(
                self.summary_tensors["positive_predictions"].eval(
                    feed_dict={self.summary_tensors["positive_predictions_input"]: y_pred[y]}),
                step)
            summary_writer.add_summary(
                self.summary_tensors["negative_predictions"].eval(
                    feed_dict={self.summary_tensors["negative_predictions_input"]: y_pred[~y]}),
                step)
            summary_writer.add_summary(summary, step)
            summary_writer.flush()
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def write_summaries(self, X, y, label, step, summary_writer=None):
        if not X:
            return
        y_pred, loss = self.predict_proba_with_loss(X, y)
        metrics = classification_metrics(y, y_pred, self.threshold)
        metrics['loss'] = loss
        if summary_writer is not None:
            summary = tf.Summary()
            for key, value in metrics.items():
                summary.value.add(tag="metrics/{}".format(key), simple_value=float(value))
            if not self.summary_tensors:
                self.summary_tensors["positive_predictions_input"] = tf.placeholder(
                    tf.float32, [None], "positive_predictions_input")
                self.summary_tensors["positive_predictions"] = tf.summary.histogram(
                    "positive_predictions", self.summary_tensors["positive_predictions_input"])
                self.summary_tensors["negative_predictions_input"] = tf.placeholder(
                    tf.float32, [None], "negative_predictions_input")
                self.summary_tensors["negative_predictions"] = tf.summary.histogram(
                    "negative_predictions", self.summary_tensors["negative_predictions_input"])
            summary_writer.add_summary(
                self.summary_tensors["positive_predictions"].eval(
                    feed_dict={self.summary_tensors["positive_predictions_input"]: y_pred[y]}),
                step)
            summary_writer.add_summary(
                self.summary_tensors["negative_predictions"].eval(
                    feed_dict={self.summary_tensors["negative_predictions_input"]: y_pred[~y]}),
                step)
            summary_writer.add_summary(summary, step)
            summary_writer.flush()
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def write_summaries(self, X, y, label, step, summary_writer=None):
        if not X:
            return
        y_pred, loss = self.predict_proba_with_loss(X, y)
        metrics = classification_metrics(y, y_pred, self.threshold)
        metrics['loss'] = loss
        if summary_writer is not None:
            summary = tf.Summary()
            for key, value in metrics.items():
                summary.value.add(tag="metrics/{}".format(key), simple_value=float(value))
            if not self.summary_tensors:
                self.summary_tensors["positive_predictions_input"] = tf.placeholder(
                    tf.float32, [None], "positive_predictions_input")
                self.summary_tensors["positive_predictions"] = tf.summary.histogram(
                    "positive_predictions", self.summary_tensors["positive_predictions_input"])
                self.summary_tensors["negative_predictions_input"] = tf.placeholder(
                    tf.float32, [None], "negative_predictions_input")
                self.summary_tensors["negative_predictions"] = tf.summary.histogram(
                    "negative_predictions", self.summary_tensors["negative_predictions_input"])
            summary_writer.add_summary(
                self.summary_tensors["positive_predictions"].eval(
                    feed_dict={self.summary_tensors["positive_predictions_input"]: y_pred[y]}),
                step)
            summary_writer.add_summary(
                self.summary_tensors["negative_predictions"].eval(
                    feed_dict={self.summary_tensors["negative_predictions_input"]: y_pred[~y]}),
                step)
            summary_writer.add_summary(summary, step)
            summary_writer.flush()
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def process(self, sess):
        """
process grabs a rollout that's been produced by the thread runner,
and updates the parameters.  The update is then sent to the parameter
server.
"""

        sess.run(self.sync)  # copy weights from shared to local
        rollout = self.pull_batch_from_queue()
        batch = process_rollout(rollout, self.gamma, lambda_=1.0)

        should_compute_summary = self.task == 0 and self.local_steps % 11 == 0

        if should_compute_summary:
            fetches = [self.summary_op, self.train_op, self.global_step]
        else:
            fetches = [self.train_op, self.global_step]

        feed_dict = {
            self.local_network.x: batch.si,
            self.ac: batch.a,
            self.adv: batch.adv,
            self.r: batch.r,
        }

        for k, v in zip(self.local_network.state_in, batch.features):
            feed_dict[k] = v

        fetched = sess.run(fetches, feed_dict=feed_dict)

        if should_compute_summary:
            self.summary_writer.add_summary(tf.Summary.FromString(fetched[0]), fetched[-1])
            self.summary_writer.flush()
        self.local_steps += 1
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def process(self, sess):
        """
process grabs a rollout that's been produced by the thread runner,
and updates the parameters.  The update is then sent to the parameter
server.
"""

        sess.run(self.sync)  # copy weights from shared to local
        rollout = self.pull_batch_from_queue()
        batch = process_rollout(rollout, self.gamma, lambda_=1.0)

        should_compute_summary = self.task == 0 and self.local_steps % 11 == 0

        if should_compute_summary:
            fetches = [self.summary_op, self.train_op, self.global_step]
        else:
            fetches = [self.train_op, self.global_step]

        feed_dict = {
            self.local_network.x: batch.si,
            self.ac: batch.a,
            self.adv: batch.adv,
            self.r: batch.r,
        }

        for k, v in zip(self.local_network.state_in, batch.features):
            feed_dict[k] = v

        fetched = sess.run(fetches, feed_dict=feed_dict)

        if should_compute_summary:
            self.summary_writer.add_summary(tf.Summary.FromString(fetched[0]), fetched[-1])
            self.summary_writer.flush()
        self.local_steps += 1
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def write_summaries(self, X, y, label, step, summary_writer=None):
        if not X:
            return
        y_pred, loss = self.predict_proba_with_loss(X, y)
        metrics = classification_metrics(y, y_pred, self.threshold)
        metrics['loss'] = loss
        if summary_writer is not None:
            summary = tf.Summary()
            for key, value in metrics.items():
                summary.value.add(tag="metrics/{}".format(key), simple_value=float(value))
            if not self.summary_tensors:
                self.summary_tensors["positive_predictions_input"] = tf.placeholder(
                    tf.float32, [None], "positive_predictions_input")
                self.summary_tensors["positive_predictions"] = tf.summary.histogram(
                    "positive_predictions", self.summary_tensors["positive_predictions_input"])
                self.summary_tensors["negative_predictions_input"] = tf.placeholder(
                    tf.float32, [None], "negative_predictions_input")
                self.summary_tensors["negative_predictions"] = tf.summary.histogram(
                    "negative_predictions", self.summary_tensors["negative_predictions_input"])
            summary_writer.add_summary(
                self.summary_tensors["positive_predictions"].eval(
                    feed_dict={self.summary_tensors["positive_predictions_input"]: y_pred[y]}),
                step)
            summary_writer.add_summary(
                self.summary_tensors["negative_predictions"].eval(
                    feed_dict={self.summary_tensors["negative_predictions_input"]: y_pred[~y]}),
                step)
            summary_writer.add_summary(summary, step)
            summary_writer.flush()
项目:python-utils    作者:zhijian-liu    | 项目源码 | 文件源码
def scalar_summary(self, tag, value, step):
        summary = tf.Summary(value = [tf.Summary.Value(tag = tag, simple_value = value)])
        self.writer.add_summary(summary, step)
        self.writer.flush()
项目:python-utils    作者:zhijian-liu    | 项目源码 | 文件源码
def histo_summary(self, tag, values, step, bins = 1000):
        hist = tf.HistogramProto()
        hist.min = float(np.min(values))
        hist.max = float(np.max(values))
        hist.num = int(np.prod(values.shape))
        hist.sum = float(np.sum(values))
        hist.sum_squares = float(np.sum(values ** 2))
        counts, edges = np.histogram(values, bins = bins)
        for edge in edges[1:]:
            hist.bucket_limit.append(edge)
        for count in counts:
            hist.bucket.append(count)
        summary = tf.Summary(value = [tf.Summary.Value(tag = tag, histo = hist)])
        self.writer.add_summary(summary, step)
        self.writer.flush()
项目:deeppavlov    作者:deepmipt    | 项目源码 | 文件源码
def make_summary(value_dict):
    """Make tf.Summary for tensorboard"""
    return tf.Summary(value=[tf.Summary.Value(tag=k, simple_value=v) for k, v in value_dict.items()])
项目:deeppavlov    作者:deepmipt    | 项目源码 | 文件源码
def summary(value_dict, global_step, writer):
    """Make tf.Summary for tensorboard"""
    summary = tf.Summary(value=[tf.Summary.Value(tag=k, simple_value=v) for k, v in value_dict.items()])
    writer.add_summary(summary, global_step)
    return None
项目:ResNeXt-DenseNet    作者:D-X-Y    | 项目源码 | 文件源码
def scalar_summary(self, tag, value, step):
    """Log a scalar variable."""
    summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
    self.writer.add_summary(summary, step)
项目:ResNeXt-DenseNet    作者:D-X-Y    | 项目源码 | 文件源码
def histo_summary(self, tag, values, step, bins=1000):
    """Log a histogram of the tensor of values."""

    # Create a histogram using numpy
    counts, bin_edges = np.histogram(values, bins=bins)

    # Fill the fields of the histogram proto
    hist = tf.HistogramProto()
    hist.min = float(np.min(values))
    hist.max = float(np.max(values))
    hist.num = int(np.prod(values.shape))
    hist.sum = float(np.sum(values))
    hist.sum_squares = float(np.sum(values**2))

    # Drop the start of the first bin
    bin_edges = bin_edges[1:]

    # Add bin edges and counts
    for edge in bin_edges:
      hist.bucket_limit.append(edge)
    for c in counts:
      hist.bucket.append(c)

    # Create and write Summary
    summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
    self.writer.add_summary(summary, step)
    self.writer.flush()
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def log_scalar(self, tag, value, step):
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
        self.writer.add_summary(summary, step)
项目:ISLES2017    作者:MiguelMonteiro    | 项目源码 | 文件源码
def log_histogram(self, tag, values, step, bins=1000):
        # Create histogram using numpy
        values = np.array(values)
        counts, bin_edges = np.histogram(values, bins=bins)

        # Fill fields of histogram proto
        hist = tf.HistogramProto()
        hist.min = float(np.min(values))
        hist.max = float(np.max(values))
        hist.num = int(np.prod(np.shape(values)))
        hist.sum = float(np.sum(values))
        hist.sum_squares = float(np.sum(values ** 2))

        # Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
        # See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
        # Thus, we drop the start of the first bin
        bin_edges = bin_edges[1:]

        # Add bin edges and counts
        for edge in bin_edges:
            hist.bucket_limit.append(edge)
        for c in counts:
            hist.bucket.append(c)

        # Create and write Summary
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
        self.writer.add_summary(summary, step)
        self.writer.flush()
项目:paraphrase-id-tensorflow    作者:nelson-liu    | 项目源码 | 文件源码
def _evaluate_on_validation(self, get_val_instance_generator,
                                batch_size,
                                num_val_steps,
                                session):
        val_batch_gen = DataManager.get_batch_generator(
            get_val_instance_generator, batch_size)
        # Calculate the mean of the validation metrics
        # over the validation set.
        val_accuracies = []
        val_losses = []
        for val_batch in tqdm(val_batch_gen,
                              total=num_val_steps,
                              desc="Validation Batches Completed",
                              leave=False):
            feed_dict = self._get_validation_feed_dict(val_batch)
            val_batch_acc, val_batch_loss = session.run(
                [self.accuracy, self.loss],
                feed_dict=feed_dict)

            val_accuracies.append(val_batch_acc)
            val_losses.append(val_batch_loss)

        # Take the mean of the accuracies and losses.
        # TODO/FIXME this assumes each batch is same shape, which
        # is not necessarily true.
        mean_val_accuracy = np.mean(val_accuracies)
        mean_val_loss = np.mean(val_losses)

        # Create a new Summary object with mean_val accuracy
        # and mean_val_loss and add it to Tensorboard.
        val_summary = tf.Summary(value=[
            tf.Summary.Value(tag="val_summaries/loss",
                             simple_value=mean_val_loss),
            tf.Summary.Value(tag="val_summaries/accuracy",
                             simple_value=mean_val_accuracy)])
        return mean_val_accuracy, mean_val_loss, val_summary
项目:Densenet-Tensorflow    作者:taki0112    | 项目源码 | 文件源码
def Evaluate(sess):
    test_acc = 0.0
    test_loss = 0.0
    test_pre_index = 0
    add = 1000

    for it in range(test_iteration):
        test_batch_x = test_x[test_pre_index: test_pre_index + add]
        test_batch_y = test_y[test_pre_index: test_pre_index + add]
        test_pre_index = test_pre_index + add

        test_feed_dict = {
            x: test_batch_x,
            label: test_batch_y,
            learning_rate: epoch_learning_rate,
            training_flag: False
        }

        loss_, acc_ = sess.run([cost, accuracy], feed_dict=test_feed_dict)

        test_loss += loss_ / 10.0
        test_acc += acc_ / 10.0

    summary = tf.Summary(value=[tf.Summary.Value(tag='test_loss', simple_value=test_loss),
                                tf.Summary.Value(tag='test_accuracy', simple_value=test_acc)])

    return test_acc, test_loss, summary
项目:yt8m    作者:forwchen    | 项目源码 | 文件源码
def MakeSummary(name, value):
  """Creates a tf.Summary proto with the given name and value."""
  summary = tf.Summary()
  val = summary.value.add()
  val.tag = str(name)
  val.simple_value = float(value)
  return summary
项目:deep-text-corrector    作者:andabi    | 项目源码 | 文件源码
def scalar_summary(self, tag, value, step):
        """Log a scalar variable."""
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
        self.writer.add_summary(summary, step)
项目:deep-text-corrector    作者:andabi    | 项目源码 | 文件源码
def histo_summary(self, tag, values, step, bins=1000):
        """Log a histogram of the tensor of values."""

        # Create a histogram using numpy
        counts, bin_edges = np.histogram(values, bins=bins)

        # Fill the fields of the histogram proto
        hist = tf.HistogramProto()
        hist.min = float(np.min(values))
        hist.max = float(np.max(values))
        hist.num = int(np.prod(values.shape))
        hist.sum = float(np.sum(values))
        hist.sum_squares = float(np.sum(values ** 2))

        # Drop the start of the first bin
        bin_edges = bin_edges[1:]

        # Add bin edges and counts
        for edge in bin_edges:
            hist.bucket_limit.append(edge)
        for c in counts:
            hist.bucket.append(c)

        # Create and write Summary
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
        self.writer.add_summary(summary, step)
        self.writer.flush()
项目:main_loop_tf    作者:fvisin    | 项目源码 | 文件源码
def epoch_begin(self):
        self.epoch_id = self.gstep_val // self.train.nbatches

        summary_val = tf.Summary.Value(tag='control_flow/Epoch',
                                       simple_value=self.epoch_id + 1)
        summary = tf.Summary(value=[summary_val])
        self.sv.summary_computed(self.sess, summary,
                                 global_step=self.epoch_id)
        self.pbar = tqdm(total=self.train.nbatches,
                         bar_format='{n_fmt}/{total_fmt}{desc}'
                                    '{percentage:3.0f}%|{bar}| '
                                    '[{elapsed}<{remaining},'
                                    '{rate_fmt}{postfix}]')
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_finalize_stats_summaries(self):
    p = plan.Plan(None)
    p.save_summaries_secs = 42
    p.losses['foo'] = tf.constant([1.0])
    p.losses['bar'] = tf.constant([2.0, 3.0])
    p.metrics['baz'] = tf.constant(4)
    p.metrics['qux'] = tf.constant([5.0, 6.0])
    p.finalize_stats()
    with self.test_session():
      self.assertEqual(6, p.loss_total.eval({p.batch_size_placeholder: 1}))
      summary = tf.Summary()
      summary.ParseFromString(p.summaries.eval({p.batch_size_placeholder: 1}))
      qux_string = tf.summary.histogram('qux', [5, 6]).eval()
      qux_proto = tf.Summary()
      qux_proto.ParseFromString(qux_string)
      qux_histogram = qux_proto.value[0].histo
      expected_values = [
          tf.Summary.Value(tag='foo', simple_value=1),
          tf.Summary.Value(tag='bar', simple_value=5),
          tf.Summary.Value(tag='loss_total', simple_value=6),
          tf.Summary.Value(tag='baz', simple_value=4),
          tf.Summary.Value(tag='qux', histo=qux_histogram)]
      six.assertCountEqual(self, expected_values, summary.value)
      summary.ParseFromString(p.summaries.eval({p.batch_size_placeholder: 2}))
      expected_values = [
          tf.Summary.Value(tag='foo', simple_value=0.5),
          tf.Summary.Value(tag='bar', simple_value=2.5),
          tf.Summary.Value(tag='loss_total', simple_value=3),
          tf.Summary.Value(tag='baz', simple_value=4),
          tf.Summary.Value(tag='qux', histo=qux_histogram)]
      six.assertCountEqual(self, expected_values, summary.value)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def emit_values(supervisor, session, step, values):
  summary = tf.Summary()
  for name, value in six.iteritems(values):
    summary_value = summary.value.add()
    summary_value.tag = name
    summary_value.simple_value = float(value)
  supervisor.summary_computed(session, summary, global_step=step)
项目:MIL.pytorch    作者:gujiuxiang    | 项目源码 | 文件源码
def add_summary_value(writer, key, value, iteration):
    summary = tf.Summary(value=[tf.Summary.Value(tag=key, simple_value=value)])
    writer.add_summary(summary, iteration)
项目:video_labelling_using_youtube8m    作者:LittleWat    | 项目源码 | 文件源码
def MakeSummary(name, value):
    """Creates a tf.Summary proto with the given name and value."""
    summary = tf.Summary()
    val = summary.value.add()
    val.tag = str(name)
    val.simple_value = float(value)
    return summary
项目:inferno    作者:inferno-pytorch    | 项目源码 | 文件源码
def log_scalar(self, tag, value, step):
        """
        Parameter
        ----------
        tag : basestring
            Name of the scalar
        value
        step : int
            training iteration
        """
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag,
                                                     simple_value=value)])
        self.writer.add_summary(summary, step)
项目:inferno    作者:inferno-pytorch    | 项目源码 | 文件源码
def log_histogram(self, tag, values, step, bins=1000):
        """Logs the histogram of a list/vector of values."""

        # Create histogram using numpy
        counts, bin_edges = np.histogram(values, bins=bins)

        # Fill fields of histogram proto
        hist = tf.HistogramProto()
        hist.min = float(np.min(values))
        hist.max = float(np.max(values))
        hist.num = int(np.prod(values.shape))
        hist.sum = float(np.sum(values))
        hist.sum_squares = float(np.sum(values**2))

        # Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
        # See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
        # Thus, we drop the start of the first bin
        bin_edges = bin_edges[1:]

        # Add bin edges and counts
        for edge in bin_edges:
            hist.bucket_limit.append(edge)
        for c in counts:
            hist.bucket.append(c)

        # Create and write Summary
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
        self.writer.add_summary(summary, step)
        self.writer.flush()