Python tensorflow 模块,TFRecordReader() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.TFRecordReader()

项目:AC-GAN    作者:jianpingliu    | 项目源码 | 文件源码
def read_example(self, filename_queue):
        # TFRecoard reader
        reader = tf.TFRecordReader()
        key, serialized_example = reader.read(filename_queue)

        # read data from serialized examples
        features = tf.parse_single_example(
            serialized_example,
            features={
                'label': tf.FixedLenFeature([], tf.int64),
                'image_raw': tf.FixedLenFeature([], tf.string)
            })
        label = features['label']
        image = features['image_raw']

        # decode raw image data as integers
        if self.image_format == 'jpeg':
            decoded_image = tf.image.decode_jpeg(
                image, channels=self.image_channels)
        else:
            decoded_image = tf.decode_raw(image, tf.uint8)

        return decoded_image, label
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):

    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:yt8m    作者:forwchen    | 项目源码 | 文件源码
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
项目:TFExperiments    作者:gnperdue    | 项目源码 | 文件源码
def _tfrecord_to_graph_ops(self, num_epochs):
        with tf.variable_scope('tfrec_to_graph'):
            file_queue = tf.train.string_input_producer(
                self.filenames_list,
                name=self.name+'_file_queue',
                num_epochs=num_epochs
            )
            reader = tf.TFRecordReader(
                options=tf.python_io.TFRecordOptions(
                    compression_type=self.compression
                ), name=self.name+'_tfrec_reader'
            )
            _, tfrecord = reader.read(file_queue)

            features, targets = parse_mnist_tfrec(
                tfrecord, self.name, self.features_shape
            )
        return features, targets
项目:tf-sr-zoo    作者:MLJejuCamp2017    | 项目源码 | 文件源码
def read_and_decode(filename_queue, batch_size):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    feature = features()
    feature = tf.parse_single_example(
        serialized_example,
        features = feature,
        )
    hr_image = tf.decode_raw(feature['hr_image'], tf.uint8)
    height = tf.cast(feature['height'], tf.int32)
    width = tf.cast(feature['width'], tf.int32)
    print(height)
    image_shape = tf.stack([128, 128,3 ])
    hr_image = tf.reshape(hr_image, image_shape)
    hr_image = tf.image.random_flip_left_right(hr_image)
    hr_image = tf.image.random_contrast(hr_image, 0.5, 1.3)
    hr_images = tf.train.shuffle_batch([hr_image], batch_size = batch_size, capacity = 30,
                                      num_threads = 2,
                                        min_after_dequeue = 10)
    return hr_images
项目:AssociativeRetrieval    作者:jxwufan    | 项目源码 | 文件源码
def read(self, shuffle=True, num_epochs=None):
    with tf.name_scope('input'):
      reader = tf.TFRecordReader()
      filename_queue = tf.train.string_input_producer([self.filename], num_epochs=num_epochs)
      _, serialized_input = reader.read(filename_queue)
      inputs = tf.parse_single_example(serialized_input,
                                       features={
                                       'inputs_seq': tf.FixedLenFeature([self.seq_len * 2 + 3], tf.int64),
                                       'output': tf.FixedLenFeature([1], tf.int64)
                                       })
      inputs_seq = inputs['inputs_seq']
      output = inputs['output']
      min_after_dequeue = 100
      if shuffle:
        inputs_seqs, outputs = tf.train.shuffle_batch([inputs_seq, output], batch_size=self.batch_size, num_threads=2, capacity=min_after_dequeue + 3 * self.batch_size, min_after_dequeue=min_after_dequeue)
      else:
        inputs_seqs, outputs = tf.train.batch([inputs_seq, output], batch_size=self.batch_size)
      return inputs_seqs, outputs
项目:youtube-8m    作者:google    | 项目源码 | 文件源码
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
项目:Video-Classification    作者:boyaolin    | 项目源码 | 文件源码
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
项目:dahoam2017    作者:KarimJedda    | 项目源码 | 文件源码
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label_raw': tf.FixedLenFeature([], tf.string),
      })
  image = tf.decode_raw(features['image_raw'], tf.int16)
  image.set_shape([IMAGE_HEIGHT * IMAGE_WIDTH])
  image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
  reshape_image = tf.reshape(image, [IMAGE_HEIGHT, IMAGE_WIDTH, 1])
  label = tf.decode_raw(features['label_raw'], tf.uint8)
  label.set_shape([CHARS_NUM * CLASSES_NUM])
  reshape_label = tf.reshape(label, [CHARS_NUM, CLASSES_NUM])
  return tf.cast(reshape_image, tf.float32), tf.cast(reshape_label, tf.float32)
项目:Youtube-8M-WILLOW    作者:antoine77340    | 项目源码 | 文件源码
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
项目:text-classification2    作者:yuhui-lin    | 项目源码 | 文件源码
def read_and_decode_embedding(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'label': tf.FixedLenFeature(
                [], tf.int64),
            'sequence_raw': tf.FixedLenFeature(
                [], tf.string),
        })
    sequence = features['sequence_raw']

    # preprocess
    s_decode = tf.decode_raw(sequence, tf.int32)
    s_decode.set_shape([FLAGS.embed_length])

    # Convert label from a scalar uint8 tensor to an int32 scalar.
    label = tf.cast(features['label'], tf.int32)

    return s_decode, label
项目:source_separation_ml_jeju    作者:hjkwon0609    | 项目源码 | 文件源码
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    features = tf.parse_single_example(serialized_example, features={
        'song_spec': tf.FixedLenFeature([], tf.string),
        'voice_spec': tf.FixedLenFeature([], tf.string),
        'mixed_spec': tf.FixedLenFeature([], tf.string)
        })

    song_spec = transform_spec_from_raw(features['song_spec'])
    voice_spec = transform_spec_from_raw(features['voice_spec'])
    mixed_spec = transform_spec_from_raw(features['mixed_spec'])

    input_spec = stack_spectrograms(mixed_spec)  # this will be the input

    target_spec = tf.concat([song_spec, voice_spec], axis=1) # target spec is going to be a concatenation of song_spec and voice_spec

    return input_spec, target_spec
项目:CycleGAN-TensorFlow    作者:vanhuyz    | 项目源码 | 文件源码
def __init__(self, tfrecords_file, image_size=256,
    min_queue_examples=1000, batch_size=1, num_threads=8, name=''):
    """
    Args:
      tfrecords_file: string, tfrecords file path
      min_queue_examples: integer, minimum number of samples to retain in the queue that provides of batches of examples
      batch_size: integer, number of images per batch
      num_threads: integer, number of preprocess threads
    """
    self.tfrecords_file = tfrecords_file
    self.image_size = image_size
    self.min_queue_examples = min_queue_examples
    self.batch_size = batch_size
    self.num_threads = num_threads
    self.reader = tf.TFRecordReader()
    self.name = name
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    opts = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB)
    if self.decode_zlib:
      reader = tf.TFRecordReader(options=opts)
    else:
      reader = tf.TFRecordReader()

    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    tf.add_to_collection("serialized_examples", serialized_examples)
    return self.prepare_serialized_examples(serialized_examples)
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    opts = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB)
    if self.decode_zlib:
      reader = tf.TFRecordReader(options=opts)
    else:
      reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    tf.add_to_collection("serialized_examples", serialized_examples)
    return self.prepare_serialized_examples(serialized_examples)
项目:cnn_picture_gazebo    作者:liuyandong1988    | 项目源码 | 文件源码
def decode_from_tfrecords(filename,num_epoch=None):
    filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#???????????????????????????????????????
    reader=tf.TFRecordReader()
    _,serialized=reader.read(filename_queue)
    example=tf.parse_single_example(serialized,features={
        'height':tf.FixedLenFeature([],tf.int64),
        'width':tf.FixedLenFeature([],tf.int64),
        'nchannel':tf.FixedLenFeature([],tf.int64),
        'image':tf.FixedLenFeature([],tf.string),
        'label':tf.FixedLenFeature([],tf.int64)
    })
    label=tf.cast(example['label'], tf.int32)
    image=tf.decode_raw(example['image'],tf.uint8)
    image=tf.reshape(image,tf.pack([
        tf.cast(example['height'], tf.int32),
        tf.cast(example['width'], tf.int32),
        tf.cast(example['nchannel'], tf.int32)]))
    return image,label
项目:tensorflow-yys    作者:ystyle    | 项目源码 | 文件源码
def read_and_decode(filename, batch_size):
    # ???????????
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)  # ????????
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'img_raw': tf.FixedLenFeature([], tf.string),
        }
    )
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    print('xxxx: ', img.get_shape())
    img = tf.reshape(img, [512, 144, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)
    image_batch, label_batch = tf.train.batch([img, label],
                                              batch_size=batch_size,
                                              num_threads=64,
                                              capacity=2000)
    return image_batch, tf.reshape(label_batch, [batch_size])
项目:apparent-age-gender-classification    作者:danielyou0230    | 项目源码 | 文件源码
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
项目:apparent-age-gender-classification    作者:danielyou0230    | 项目源码 | 文件源码
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })
        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
#read_and_decode('test.tfrecords')
项目:apparent-age-gender-classification    作者:danielyou0230    | 项目源码 | 文件源码
def read_and_decode(filename, img_size=128, depth=1):
    if not filename.endswith('.tfrecords'):
        print "Invalid file \"{:s}\"".format(filename)
        return [], []
    else:
        data_queue = tf.train.string_input_producer([filename])

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(data_queue) 
        features = tf.parse_single_example(serialized_example,
                   features={
                             'label'   : tf.FixedLenFeature([], tf.int64),
                             'img_raw' : tf.FixedLenFeature([], tf.string),
                            })

        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [img_size, img_size, depth])
        # Normalize the image
        img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
        label = tf.cast(features['label'], tf.int32)
        label_onehot = tf.stack(tf.one_hot(label, n_classes))
        return img, label_onehot
项目:Youtube8mdataset_kagglechallenge    作者:jasonlee27    | 项目源码 | 文件源码
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def test_batch_randomized(self):
    batch_size = 17
    queue_capacity = 1234
    name = "my_batch"

    with tf.Graph().as_default() as g, self.test_session(graph=g) as sess:
      inputs = tf.contrib.learn.io.read_batch_examples(
          _VALID_FILE_PATTERN, batch_size,
          reader=tf.TFRecordReader, randomize_input=True,
          queue_capacity=queue_capacity, name=name)
      self.assertEqual("%s:1" % name, inputs.name)
      file_name_queue_name = "%s/file_name_queue" % name
      file_names_name = "%s/input" % file_name_queue_name
      example_queue_name = "%s/random_shuffle_queue" % name
      op_nodes = test_util.assert_ops_in_graph({
          file_names_name: "Const",
          file_name_queue_name: "FIFOQueue",
          "%s/read/TFRecordReader" % name: "TFRecordReader",
          example_queue_name: "RandomShuffleQueue",
          name: "QueueDequeueMany"
      }, g)
      self.assertEqual(
          set(_FILE_NAMES), set(sess.run(["%s:0" % file_names_name])[0]))
      self.assertEqual(
          queue_capacity, op_nodes[example_queue_name].attr["capacity"].i)
项目:faststyle    作者:ghwatson    | 项目源码 | 文件源码
def read_my_file_format(filename_queue, resize_shape=None):
    """Sets up part of the pipeline that takes elements from the filename queue
    and turns it into a tf.Tensor of a batch of images.

    :param filename_queue:
        tf.train.string_input_producer object
    :param resize_shape:
        2 element list defining the shape to resize images to.
    """
    reader = tf.TFRecordReader()
    key, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example, features={
            'image/encoded': tf.FixedLenFeature([], tf.string),
            'image/height': tf.FixedLenFeature([], tf.int64),
            'image/channels': tf.FixedLenFeature([], tf.int64),
            'image/width': tf.FixedLenFeature([], tf.int64)})
    example = tf.image.decode_jpeg(features['image/encoded'], 3)
    processed_example = preprocessing(example, resize_shape)
    return processed_example
项目:yolo-tf    作者:ruiminshen    | 项目源码 | 文件源码
def decode_image_objects(paths):
    with tf.name_scope(inspect.stack()[0][3]):
        with tf.name_scope('parse_example'):
            reader = tf.TFRecordReader()
            _, serialized = reader.read(tf.train.string_input_producer(paths))
            example = tf.parse_single_example(serialized, features={
                'imagepath': tf.FixedLenFeature([], tf.string),
                'imageshape': tf.FixedLenFeature([3], tf.int64),
                'objects': tf.FixedLenFeature([2], tf.string),
            })
        imagepath = example['imagepath']
        objects = example['objects']
        with tf.name_scope('decode_objects'):
            objects_class = tf.decode_raw(objects[0], tf.int64, name='objects_class')
            objects_coord = tf.decode_raw(objects[1], tf.float32)
            objects_coord = tf.reshape(objects_coord, [-1, 4], name='objects_coord')
        with tf.name_scope('load_image'):
            imagefile = tf.read_file(imagepath)
            image = tf.image.decode_jpeg(imagefile, channels=3)
    return image, example['imageshape'], objects_class, objects_coord
项目:Embarrassingly-Parallel-Image-Classification    作者:Azure    | 项目源码 | 文件源码
def get_dataset(dataset_name, dataset_dir, image_count, class_count, split_name):
    slim = tf.contrib.slim
    items_to_descriptions = {'image': 'A color image.',
                             'label': 'An integer in range(0, class_count)'}
    file_pattern = os.path.join(dataset_dir, '{}_{}_*.tfrecord'.format(dataset_name, split_name))
    reader = tf.TFRecordReader
    keys_to_features = {'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
                        'image/format': tf.FixedLenFeature((), tf.string, default_value='png'),
                        'image/class/label': tf.FixedLenFeature([], tf.int64,
                                                                default_value=tf.zeros([], dtype=tf.int64))}
    items_to_handlers = {'image': slim.tfexample_decoder.Image(),
                         'label': slim.tfexample_decoder.Tensor('image/class/label')}
    decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)
    labels_to_names = read_label_file(dataset_dir)
    return(slim.dataset.Dataset(data_sources=file_pattern,
                                reader=reader,
                                decoder=decoder,
                                num_samples=image_count,
                                items_to_descriptions=items_to_descriptions,
                                num_classes=class_count,
                                labels_to_names=labels_to_names,
                                shuffle=True))
项目:CellDetection    作者:quqixun    | 项目源码 | 文件源码
def decode_record(filename_queue, patch_size,
                  channel_num=3):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'image': tf.FixedLenFeature([], tf.string),
        })

    img = tf.decode_raw(features['image'], tf.uint8)
    img = tf.reshape(img, [patch_size, patch_size, channel_num])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)

    return img, label
项目:Automatic_Speech_Recognition    作者:zzw922cn    | 项目源码 | 文件源码
def read(filename_queue, feature_num=2, dtypes=[list, int]):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  feature_dict={}
  for i in range(feature_num):
    # here, only three data types are allowed: tf.float32, tf.int64, tf.string
    if dtypes[i] is int:
      feature_dict['feature'+str(i+1)]=tf.FixedLenFeature([], tf.int64)
    else:
      feature_dict['feature'+str(i+1)]=tf.FixedLenFeature([], tf.string)
  features = tf.parse_single_example(
      serialized_example,
      features=feature_dict)
  return features

#======================================================================================
## test code
项目:neuro-stereo    作者:lugu    | 项目源码 | 文件源码
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      # Defaults are not specified since both keys are required.
      features={
          'image_left': tf.FixedLenFeature([], tf.string),
          'image_right': tf.FixedLenFeature([], tf.string),
      })

  image_left = tf.decode_raw(features['image_left'], tf.uint8)
  image_right = tf.decode_raw(features['image_right'], tf.uint8)
  width = 960
  height = 540
  depth = 4
  image_left.set_shape([width*height*depth])
  image_right.set_shape([width*height*depth])

  return image_left, image_right
项目:tensorfx    作者:TensorLab    | 项目源码 | 文件源码
def read_instances(self, count, shuffle, epochs):
    """Reads the data represented by this DataSource using a TensorFlow reader.

    Arguments:
      epochs: The number of epochs or passes over the data to perform.
    Returns:
      A tensor containing instances that are read.
    """
    # None implies unlimited; switch the value to None when epochs is 0.
    epochs = epochs or None

    options = None
    if self._compressed:
      options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)

    files = tf.train.match_filenames_once(self._path, name='files')
    queue = tf.train.string_input_producer(files, num_epochs=epochs, shuffle=shuffle,
                                           name='queue')
    reader = tf.TFRecordReader(options=options, name='reader')
    _, instances = reader.read_up_to(queue, count, name='read')

    return instances
项目:streetview    作者:ydnaandy123    | 项目源码 | 文件源码
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
            serialized_example,
            features={
                'image_raw': tf.FixedLenFeature([], tf.string),
            })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape(128 * 128 * 3)
    image = tf.reshape(image, [128, 128, 3])

    image = tf.cast(image, tf.float32) * (2. / 255) - 1.

    return image
项目:streetview    作者:ydnaandy123    | 项目源码 | 文件源码
def read_and_decode_with_labels(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
            serialized_example,
            features={
                'image_raw': tf.FixedLenFeature([], tf.string),
                'label' : tf.FixedLenFeature([], tf.int64)
            })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image.set_shape(128 * 128 * 3)
    image = tf.reshape(image, [128, 128, 3])

    image = tf.cast(image, tf.float32) * (2. / 255) - 1.

    label = tf.cast(features['label'], tf.int32)

    return image, label
项目:num-seq-recognizer    作者:gmlove    | 项目源码 | 文件源码
def batches(data_file_path, max_number_length, batch_size, size,
            num_preprocess_threads=1, is_training=True, channels=1):
  filename_queue = tf.train.string_input_producer([data_file_path])
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
    serialized_example,
    features={
      'image_png': tf.FixedLenFeature([], tf.string),
      'label': tf.FixedLenFeature([max_number_length], tf.int64),
      'length': tf.FixedLenFeature([1], tf.int64),
      'bbox': tf.FixedLenFeature([4], tf.int64),
    })
  image, bbox, label, length = features['image_png'], features['bbox'], features['label'], features['length']
  bbox = tf.cast(bbox, tf.int32)
  dequeued_data = []
  for i in range(num_preprocess_threads):
    dequeued_img = tf.image.decode_png(image, channels)
    dequeued_img = resize_image(dequeued_img, bbox, is_training, size, channels)
    dequeued_data.append([dequeued_img, tf.one_hot(length - 1, max_number_length)[0], tf.one_hot(label, 11)])

  return tf.train.batch_join(dequeued_data, batch_size=batch_size, capacity=batch_size * 3)
项目:neuroimage-tensorflow    作者:corticometrics    | 项目源码 | 文件源码
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,features={
        'image_raw': tf.FixedLenFeature([], tf.string),
        'label_raw': tf.FixedLenFeature([], tf.string)})
    image  = tf.cast(tf.decode_raw(features['image_raw'], tf.int16), tf.float32)
    labels = tf.decode_raw(features['label_raw'], tf.int16)

    #PW 2017/03/03: Zero-center data here?
    image.set_shape([IMG_DIM*IMG_DIM*IMG_DIM])
    image  = tf.reshape(image, [IMG_DIM,IMG_DIM,IMG_DIM,1])

    labels.set_shape([IMG_DIM*IMG_DIM*IMG_DIM])
    labels  = tf.reshape(image, [IMG_DIM,IMG_DIM,IMG_DIM])

    # Dimensions (X, Y, Z, channles)
    return image, labels
项目:sciencebeam-gym    作者:elifesciences    | 项目源码 | 文件源码
def read_examples(input_files, shuffle, num_epochs=None):
  """Creates readers and queues for reading example protos."""
  files = []
  for e in input_files:
    for path in e.split(','):
      files.extend(file_io.get_matching_files(path))
  files = sorted(files)

  # Convert num_epochs == 0 -> num_epochs is None, if necessary
  num_epochs = num_epochs or None

  # Build a queue of the filenames to be read.
  filename_queue = tf.train.string_input_producer(files, num_epochs, shuffle)

  options = tf.python_io.TFRecordOptions(
      compression_type=tf.python_io.TFRecordCompressionType.GZIP)
  example_id, encoded_example = tf.TFRecordReader(options=options).read(
      filename_queue)

  return example_id, encoded_example
项目:deepcake    作者:ericyue    | 项目源码 | 文件源码
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      features={
          "label": tf.FixedLenFeature([], tf.float32),
          "categorical_features": tf.FixedLenFeature([CATEGORICAL_FEATURES_SIZE], tf.string),
          "continuous_features": tf.FixedLenFeature([CONTINUOUS_FEATURES_SIZE], tf.float32),
      })
  label = features["label"]
  continuous_features = features["continuous_features"]
  categorical_features = tf.cast(tf.string_to_hash_bucket(features["categorical_features"], BUCKET_SIZE), tf.float32)
  return label, tf.concat(0, [continuous_features, categorical_features])


# Read serialized examples from filename queue
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "predictions": tf.FixedLenFeature([self.num_classes], tf.float32),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]]), features["predictions"]
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
        """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

        Args:
          filename_queue: A tensorflow queue of filename locations.

        Returns:
          A tuple of video indexes, features, labels, and padding data.
        """
        reader = tf.TFRecordReader()
        _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

        # set the mapping from the fields to data types in the proto
        num_features = len(self.feature_names)
        assert num_features > 0, "self.feature_names is empty!"
        assert len(self.feature_names) == len(self.feature_sizes), \
            "length of feature_names (={}) != length of feature_sizes (={})".format( \
                len(self.feature_names), len(self.feature_sizes))

        feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                       "predictions": tf.FixedLenFeature([self.num_classes], tf.float32),
                       "labels": tf.VarLenFeature(tf.int64)}

        features = tf.parse_example(serialized_examples, features=feature_map)

        return features["predictions"]
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_writer(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue):

    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    contexts, features = tf.parse_single_sequence_example(
        serialized_example,
        context_features={
            "video_id": tf.FixedLenFeature([], tf.string),
            "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            "rgb": tf.FixedLenSequenceFeature([], dtype=tf.string),
            "audio": tf.FixedLenSequenceFeature([], dtype=tf.string),
        })

    # read ground truth labels
    labels = (tf.cast(
        tf.sparse_to_dense(contexts["labels"].values, (self.num_classes,), 1,
            validate_indices=False),
        tf.bool))

    rgbs, num_frames = self.get_video_matrix(features["rgb"], 1024, self.max_frames)
    audios, num_frames = self.get_video_matrix(features["audio"], 1024, self.max_frames)

    batch_video_ids = tf.expand_dims(contexts["video_id"], 0)
    batch_rgbs = tf.expand_dims(rgbs, 0)
    batch_audios = tf.expand_dims(audios, 0)
    batch_labels = tf.expand_dims(labels, 0)
    batch_frames = tf.expand_dims(num_frames, 0)

    return batch_video_ids, batch_rgbs, batch_audios, batch_labels, batch_frames
项目:benchmarks    作者:tensorflow    | 项目源码 | 文件源码
def reader(self):
    return tf.TFRecordReader()
项目:US-image-prediction    作者:ChengruiWu008    | 项目源码 | 文件源码
def read_and_decode(filename):
    #???????????
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)   #????????
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'label': tf.FixedLenFeature([], tf.int64),
                                           'img_raw' : tf.FixedLenFeature([], tf.string),
                                       })
    img = tf.decode_raw(features['img_raw'], tf.uint8)
    img = tf.reshape(img, [224, 224, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(features['label'], tf.int32)
    return img, label
项目:hdrnet_legacy    作者:mgharbi    | 项目源码 | 文件源码
def __init__(self, fnames, shuffle=True, num_epochs=None):
    """Init from a list of filenames to enqueue.

    Args:
      fnames: list of .tfrecords filenames to enqueue.
      shuffle: if true, shuffle the list at each epoch
    """
    self._fnames = fnames
    self._fname_queue = tf.train.string_input_producer(
        self._fnames,
        capacity=1000,
        shuffle=shuffle,
        num_epochs=num_epochs,
        shared_name='input_files')
    self._reader = tf.TFRecordReader()

    # Read first record to initialize the shape parameters
    with tf.Graph().as_default():
      fname_queue = tf.train.string_input_producer(self._fnames)
      reader = tf.TFRecordReader()
      _, serialized = reader.read(fname_queue)
      shapes = self._parse_shape(serialized)
      dtypes = self._parse_dtype(serialized)

      config = tf.ConfigProto()
      config.gpu_options.allow_growth = True

      with tf.Session(config=config) as sess:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        self.shapes = sess.run(shapes)
        self.shapes = {k: self.shapes[k+'_sz'].tolist() for k in self.FEATURES}

        self.dtypes = sess.run(dtypes)
        self.dtypes = {k: REVERSE_TYPEMAP[self.dtypes[k+'_dtype'][0]] for k in self.FEATURES}

        coord.request_stop()
        coord.join(threads)
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def _parse(self, filename_queue):
        with tf.name_scope("parsing"):
            reader = tf.TFRecordReader()
            _, serialized_example = reader.read(filename_queue)
            features = tf.parse_single_example(serialized_example,
                features={'image':tf.FixedLenFeature([],tf.string),
                'label':tf.FixedLenFeature([],tf.int64)
                }
            )
            label = tf.cast(features['label'],tf.int32)
        return features, label
项目:tfutils    作者:neuroailab    | 项目源码 | 文件源码
def get_input_op(self, fq, parsers):
        reader = tf.TFRecordReader()
        _, serialized_data = reader.read_up_to(fq, self.batch_size)
        return tf.parse_example(serialized_data, parsers)
项目:DualEncoder    作者:nachoaguadoc    | 项目源码 | 文件源码
def create_input_fn(mode, input_files, batch_size, num_epochs):
  def input_fn():
    features = tf.contrib.layers.create_feature_spec_for_parsing(
        get_feature_columns(mode))

    feature_map = tf.contrib.learn.io.read_batch_features(
        file_pattern=input_files,
        batch_size=batch_size,
        features=features,
        reader=tf.TFRecordReader,
        randomize_input=True,
        num_epochs=num_epochs,
        queue_capacity=200000 + batch_size * 10,
        name="read_batch_features_{}".format(mode))

    # This is an ugly hack because of a current bug in tf.learn
    # During evaluation TF tries to restore the epoch variable which isn't defined during training
    # So we define the variable manually here
    if mode == tf.contrib.learn.ModeKeys.TRAIN:
      tf.get_variable(
        "read_batch_features_eval/file_name_queue/limit_epochs/epochs",
        initializer=tf.constant(0, dtype=tf.int64))

    if mode == tf.contrib.learn.ModeKeys.TRAIN:
      target = feature_map.pop("label")
    else:
      # In evaluation we have 10 classes (utterances).
      # The first one (index 0) is always the correct one
      target = tf.zeros([batch_size, 1], dtype=tf.int64)
    return feature_map, target
  return input_fn
项目:DL2W    作者:gauravmm    | 项目源码 | 文件源码
def decode(filename_queue):
    # Create TFRecords reader
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    # Feature keys in TFRecords example
    features = tf.parse_single_example(serialized_example, features={
        'id': tf.FixedLenFeature([], tf.string),
        'vector': tf.FixedLenFeature([], tf.string),
        'label': tf.VarLenFeature(tf.int64)
    })

    video_id = features['id']

    # Decode vector and pad to fixed size
    vector = tf.decode_raw(features['vector'], tf.float32)
    vector = tf.reshape(vector, [-1, 300])
    vector = tf.pad(vector, [[0, 40 - tf.shape(vector)[0]], [0, 0]])
    vector.set_shape([40, 300])

    # Get label index
    label = tf.sparse_to_indicator(features['label'], 4716)
    label.set_shape([4716])
    label = tf.cast(label, tf.float32)

    return video_id, vector, label

# Creates input pipeline for tensorflow networks