Python tensorflow 模块,greater() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.greater()

项目:cxflow-tensorflow    作者:Cognexa    | 项目源码 | 文件源码
def bin_stats(predictions: tf.Tensor, labels: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
    """
    Calculate f1, precision and recall from binary classification expected and predicted values.

    :param predictions: 2-d tensor (batch, predictions) of predicted 0/1 classes
    :param labels: 2-d tensor (batch, labels) of expected 0/1 classes
    :return: a tuple of batched (f1, precision and recall) values
    """
    predictions = tf.cast(predictions, tf.int32)
    labels = tf.cast(labels, tf.int32)

    true_positives = tf.reduce_sum((predictions * labels), axis=1)
    false_positives = tf.reduce_sum(tf.cast(tf.greater(predictions, labels), tf.int32), axis=1)
    false_negatives = tf.reduce_sum(tf.cast(tf.greater(labels, predictions), tf.int32), axis=1)

    recall = true_positives / (true_positives + false_negatives)
    precision = true_positives / (true_positives + false_positives)
    f1_score = 2 / (1 / precision + 1 / recall)

    return f1_score, precision, recall
项目:attend_infer_repeat    作者:akosiorek    | 项目源码 | 文件源码
def tabular_kl(p, q, zero_prob_value=0., logarg_clip=None):
    """Computes KL-divergence KL(p||q) for two probability mass functions (pmf) given in a tabular form.

    :param p: iterable
    :param q: iterable
    :param zero_prob_value: float; values below this threshold are treated as zero
    :param logarg_clip: float or None, clips the argument to the log to lie in [-logarg_clip, logarg_clip] if not None
    :return: iterable of brodcasted shape of (p * q), per-coordinate value of KL(p||q)
    """
    p, q = (tf.cast(i, tf.float64) for i in (p, q))
    non_zero = tf.greater(p, zero_prob_value)
    logarg = p / q

    if logarg_clip is not None:
        logarg = clip_preserve(logarg, 1. / logarg_clip, logarg_clip)

    log = masked_apply(logarg, tf.log, non_zero)
    kl = p * log

    return tf.cast(kl, tf.float32)
项目:PixelDCN    作者:HongyangGao    | 项目源码 | 文件源码
def cal_loss(self):
        one_hot_labels = tf.one_hot(
            self.labels, depth=self.conf.class_num,
            axis=self.channel_axis, name='labels/one_hot')
        losses = tf.losses.softmax_cross_entropy(
            one_hot_labels, self.predictions, scope='loss/losses')
        self.loss_op = tf.reduce_mean(losses, name='loss/loss_op')
        self.decoded_preds = tf.argmax(
            self.predictions, self.channel_axis, name='accuracy/decode_pred')
        correct_prediction = tf.equal(
            self.labels, self.decoded_preds,
            name='accuracy/correct_pred')
        self.accuracy_op = tf.reduce_mean(
            tf.cast(correct_prediction, tf.float32, name='accuracy/cast'),
            name='accuracy/accuracy_op')
        # weights = tf.cast(
        #     tf.greater(self.decoded_preds, 0, name='m_iou/greater'),
        #     tf.int32, name='m_iou/weights')
        weights = tf.cast(
            tf.less(self.labels, self.conf.channel, name='m_iou/greater'),
            tf.int64, name='m_iou/weights')
        labels = tf.multiply(self.labels, weights, name='m_iou/mul')
        self.m_iou, self.miou_op = tf.metrics.mean_iou(
            self.labels, self.decoded_preds, self.conf.class_num,
            weights, name='m_iou/m_ious')
项目:antgo    作者:jianzfb    | 项目源码 | 文件源码
def bboxes_filter_center(labels, bboxes, margins=[0., 0., 0., 0.],
                         scope=None):
    """Filter out bounding boxes whose center are not in
    the rectangle [0, 0, 1, 1] + margins. The margin Tensor
    can be used to enforce or loosen this condition.

    Return:
      labels, bboxes: Filtered elements.
    """
    with tf.name_scope(scope, 'bboxes_filter', [labels, bboxes]):
        cy = (bboxes[:, 0] + bboxes[:, 2]) / 2.
        cx = (bboxes[:, 1] + bboxes[:, 3]) / 2.
        mask = tf.greater(cy, margins[0])
        mask = tf.logical_and(mask, tf.greater(cx, margins[1]))
        mask = tf.logical_and(mask, tf.less(cx, 1. + margins[2]))
        mask = tf.logical_and(mask, tf.less(cx, 1. + margins[3]))
        # Boolean masking...
        labels = tf.boolean_mask(labels, mask)
        bboxes = tf.boolean_mask(bboxes, mask)
        return labels, bboxes
项目:LiTeFlow    作者:petrux    | 项目源码 | 文件源码
def safe_div(numerator, denominator, name='safe_div'):
    """Divides two values, returning 0 if the denominator is <= 0.

    Args:
      numerator: A real `Tensor`.
      denominator: A real `Tensor`, with dtype matching `numerator`.
      name: Name for the returned op.

    Returns:
      0 if `denominator` <= 0, else `numerator` / `denominator`
    """
    return tf.where(
        tf.greater(denominator, 0),
        tf.truediv(numerator, denominator),
        0,
        name=name)
项目:SSD_tensorflow_VOC    作者:LevinJ    | 项目源码 | 文件源码
def bboxes_filter_center(labels, bboxes, margins=[0., 0., 0., 0.],
                         scope=None):
    """Filter out bounding boxes whose center are not in
    the rectangle [0, 0, 1, 1] + margins. The margin Tensor
    can be used to enforce or loosen this condition.

    Return:
      labels, bboxes: Filtered elements.
    """
    with tf.name_scope(scope, 'bboxes_filter', [labels, bboxes]):
        cy = (bboxes[:, 0] + bboxes[:, 2]) / 2.
        cx = (bboxes[:, 1] + bboxes[:, 3]) / 2.
        mask = tf.greater(cy, margins[0])
        mask = tf.logical_and(mask, tf.greater(cx, margins[1]))
        mask = tf.logical_and(mask, tf.less(cx, 1. + margins[2]))
        mask = tf.logical_and(mask, tf.less(cx, 1. + margins[3]))
        # Boolean masking...
        labels = tf.boolean_mask(labels, mask)
        bboxes = tf.boolean_mask(bboxes, mask)
        return labels, bboxes
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def insert(self, ids, scores):
    """Insert the ids and scores into the TopN."""
    with tf.control_dependencies(self.last_ops):
      scatter_op = tf.scatter_update(self.id_to_score, ids, scores)
      larger_scores = tf.greater(scores, self.sl_scores[0])

      def shortlist_insert():
        larger_ids = tf.boolean_mask(tf.to_int64(ids), larger_scores)
        larger_score_values = tf.boolean_mask(scores, larger_scores)
        shortlist_ids, new_ids, new_scores = self.ops.top_n_insert(
            self.sl_ids, self.sl_scores, larger_ids, larger_score_values)
        u1 = tf.scatter_update(self.sl_ids, shortlist_ids, new_ids)
        u2 = tf.scatter_update(self.sl_scores, shortlist_ids, new_scores)
        return tf.group(u1, u2)

      # We only need to insert into the shortlist if there are any
      # scores larger than the threshold.
      cond_op = tf.cond(
          tf.reduce_any(larger_scores), shortlist_insert, tf.no_op)
      with tf.control_dependencies([cond_op]):
        self.last_ops = [scatter_op, cond_op]
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def insert(self, ids, scores):
    """Insert the ids and scores into the TopN."""
    with tf.control_dependencies(self.last_ops):
      scatter_op = tf.scatter_update(self.id_to_score, ids, scores)
      larger_scores = tf.greater(scores, self.sl_scores[0])

      def shortlist_insert():
        larger_ids = tf.boolean_mask(tf.to_int64(ids), larger_scores)
        larger_score_values = tf.boolean_mask(scores, larger_scores)
        shortlist_ids, new_ids, new_scores = self.ops.top_n_insert(
            self.sl_ids, self.sl_scores, larger_ids, larger_score_values)
        u1 = tf.scatter_update(self.sl_ids, shortlist_ids, new_ids)
        u2 = tf.scatter_update(self.sl_scores, shortlist_ids, new_scores)
        return tf.group(u1, u2)

      # We only need to insert into the shortlist if there are any
      # scores larger than the threshold.
      cond_op = tf.cond(
          tf.reduce_any(larger_scores), shortlist_insert, tf.no_op)
      with tf.control_dependencies([cond_op]):
        self.last_ops = [scatter_op, cond_op]
项目:EAS    作者:han-cai    | 项目源码 | 文件源码
def build_training_process(self):
        wider_side_obj, wider_entropy = tf.cond(
            tf.greater(self.wider_seg_deeper, 0),
            lambda: self.get_wider_side_obj(),
            lambda: (tf.constant(0.0, dtype=tf.float32), tf.constant(0.0, dtype=tf.float32))
        )
        batch_size = array_ops.shape(self.reward)[0]
        deeper_side_obj, deeper_entropy = tf.cond(
            self.has_deeper,
            lambda: self.get_deeper_side_obj(),
            lambda: (tf.constant(0.0, dtype=tf.float32), tf.constant(0.0, dtype=tf.float32))
        )
        self.obj = wider_side_obj + deeper_side_obj
        entropy_term = wider_entropy * tf.cast(self.wider_seg_deeper, tf.float32) + \
                       deeper_entropy * tf.cast(batch_size - self.wider_seg_deeper, tf.float32)
        entropy_term /= tf.cast(batch_size, tf.float32)

        optimizer = BasicModel.build_optimizer(self.learning_rate, self.opt_config[0], self.opt_config[1])
        self.train_step = optimizer.minimize(- self.obj - self.entropy_penalty * entropy_term)
项目:MobileNet    作者:Zehaos    | 项目源码 | 文件源码
def get_mu_tensor(self):
    const_fact = self._dist_to_opt_avg**2 * self._h_min**2 / 2 / self._grad_var
    coef = tf.Variable([-1.0, 3.0, 0.0, 1.0], dtype=tf.float32, name="cubic_solver_coef")
    coef = tf.scatter_update(coef, tf.constant(2), -(3 + const_fact) )        
    roots = tf.py_func(np.roots, [coef], Tout=tf.complex64, stateful=False)

    # filter out the correct root
    root_idx = tf.logical_and(tf.logical_and(tf.greater(tf.real(roots), tf.constant(0.0) ),
      tf.less(tf.real(roots), tf.constant(1.0) ) ), tf.less(tf.abs(tf.imag(roots) ), 1e-5) )
    # in case there are two duplicated roots satisfying the above condition
    root = tf.reshape(tf.gather(tf.gather(roots, tf.where(root_idx) ), tf.constant(0) ), shape=[] )
    tf.assert_equal(tf.size(root), tf.constant(1) )

    dr = self._h_max / self._h_min
    mu = tf.maximum(tf.real(root)**2, ( (tf.sqrt(dr) - 1)/(tf.sqrt(dr) + 1) )**2)    
    return mu
项目:MobileNet    作者:Zehaos    | 项目源码 | 文件源码
def find_dup(a):
  """ Find the duplicated elements in 1-D a tensor.
  Args:
    a: 1-D tensor.

  Return:
    more_than_one_vals: duplicated value in a.
    indexes_in_a: duplicated value's index in a.
    dups_in_a: duplicated value with duplicate in a.
  """
  unique_a_vals, unique_idx = tf.unique(a)
  count_a_unique = tf.unsorted_segment_sum(tf.ones_like(a),
                                           unique_idx,
                                           tf.shape(a)[0])

  more_than_one = tf.greater(count_a_unique, 1)
  more_than_one_idx = tf.squeeze(tf.where(more_than_one))
  more_than_one_vals = tf.squeeze(tf.gather(unique_a_vals, more_than_one_idx))

  not_duplicated, _ = tf.setdiff1d(a, more_than_one_vals)
  dups_in_a, indexes_in_a = tf.setdiff1d(a, not_duplicated)

  return more_than_one_vals, indexes_in_a, dups_in_a
项目:deepsleepnet    作者:akaraspt    | 项目源码 | 文件源码
def retrieve_seq_length_op2(data):
    """An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)],
    it can be used when the features of padding (on right hand side) are all zeros.

    Parameters
    -----------
    data : tensor
        [batch_size, n_step(max)] with zero padding on right hand side.

    Examples
    --------
    >>> data = [[1,2,0,0,0],
    ...         [1,2,3,0,0],
    ...         [1,2,6,1,0]]
    >>> o = retrieve_seq_length_op2(data)
    >>> sess = tf.InteractiveSession()
    >>> tl.layers.initialize_global_variables(sess)
    >>> print(o.eval())
    ... [2 3 4]
    """
    return tf.reduce_sum(tf.cast(tf.greater(data, tf.zeros_like(data)), tf.int32), 1)
项目:TextGAN    作者:ankitkv    | 项目源码 | 文件源码
def mle_loss(self, outputs, targets):
        '''Maximum likelihood estimation loss.'''
        present_mask = tf.greater(targets, 0, name='present_mask')
        # don't enfoce loss on true <unk>'s
        unk_mask = tf.not_equal(targets, self.vocab.unk_index, name='unk_mask')
        mask = tf.cast(tf.logical_and(present_mask, unk_mask), tf.float32)
        output = tf.reshape(tf.concat(1, outputs), [-1, cfg.hidden_size])
        if self.training and cfg.softmax_samples < len(self.vocab.vocab):
            targets = tf.reshape(targets, [-1, 1])
            mask = tf.reshape(mask, [-1])
            loss = tf.nn.sampled_softmax_loss(self.softmax_w, self.softmax_b, output, targets,
                                              cfg.softmax_samples, len(self.vocab.vocab))
            loss *= mask
        else:
            logits = tf.nn.bias_add(tf.matmul(output, tf.transpose(self.softmax_w),
                                              name='softmax_transform_mle'), self.softmax_b)
            loss = tf.nn.seq2seq.sequence_loss_by_example([logits],
                                                          [tf.reshape(targets, [-1])],
                                                          [tf.reshape(mask, [-1])])
        return tf.reshape(loss, [cfg.batch_size, -1])
项目:monodepth360    作者:srijanparmeshwar    | 项目源码 | 文件源码
def atan2(x, y, epsilon = 1.0e-12):
    """
    A hack until the TensorFlow developers implement a function that can find the angle from an x and y co-
    ordinate.
    :param x:
    :param epsilon:
    :return:
    """
    # Add a small number to all zeros, to avoid division by zero:
    x = tf.where(tf.equal(x, 0.0), x + epsilon, x)
    y = tf.where(tf.equal(y, 0.0), y + epsilon, y)

    angle = tf.where(tf.greater(x, 0.0), tf.atan(y / x), tf.zeros_like(x))
    angle = tf.where(tf.logical_and(tf.less(x, 0.0), tf.greater_equal(y, 0.0)), tf.atan(y / x) + np.pi, angle)
    angle = tf.where(tf.logical_and(tf.less(x, 0.0), tf.less(y, 0.0)), tf.atan(y / x) - np.pi, angle)
    angle = tf.where(tf.logical_and(tf.equal(x, 0.0), tf.greater(y, 0.0)), 0.5 * np.pi * tf.ones_like(x), angle)
    angle = tf.where(tf.logical_and(tf.equal(x, 0.0), tf.less(y, 0.0)), -0.5 * np.pi * tf.ones_like(x), angle)
    angle = tf.where(tf.logical_and(tf.equal(x, 0.0), tf.equal(y, 0.0)), tf.zeros_like(x), angle)
    return angle

# List of faces for consistent ordering.
项目:tensorlayer-chinese    作者:shorxp    | 项目源码 | 文件源码
def retrieve_seq_length_op2(data):
    """An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)],
    it can be used when the features of padding (on right hand side) are all zeros.

    Parameters
    -----------
    data : tensor
        [batch_size, n_step(max)] with zero padding on right hand side.

    Examples
    --------
    >>> data = [[1,2,0,0,0],
    ...         [1,2,3,0,0],
    ...         [1,2,6,1,0]]
    >>> o = retrieve_seq_length_op2(data)
    >>> sess = tf.InteractiveSession()
    >>> tl.layers.initialize_global_variables(sess)
    >>> print(o.eval())
    ... [2 3 4]
    """
    return tf.reduce_sum(tf.cast(tf.greater(data, tf.zeros_like(data)), tf.int32), 1)
项目:Deep-Fashion    作者:TomPyonsuke    | 项目源码 | 文件源码
def bboxes_filter_center(labels, bboxes, margins=[0., 0., 0., 0.],
                         scope=None):
    """Filter out bounding boxes whose center are not in
    the rectangle [0, 0, 1, 1] + margins. The margin Tensor
    can be used to enforce or loosen this condition.

    Return:
      labels, bboxes: Filtered elements.
    """
    with tf.name_scope(scope, 'bboxes_filter', [labels, bboxes]):
        cy = (bboxes[:, 0] + bboxes[:, 2]) / 2.
        cx = (bboxes[:, 1] + bboxes[:, 3]) / 2.
        mask = tf.greater(cy, margins[0])
        mask = tf.logical_and(mask, tf.greater(cx, margins[1]))
        mask = tf.logical_and(mask, tf.less(cx, 1. + margins[2]))
        mask = tf.logical_and(mask, tf.less(cx, 1. + margins[3]))
        # Boolean masking...
        labels = tf.boolean_mask(labels, mask)
        bboxes = tf.boolean_mask(bboxes, mask)
        return labels, bboxes
项目:MGP-RNN    作者:jfutoma    | 项目源码 | 文件源码
def get_probs_and_accuracy(preds,O):
    """
    helper function. we have a prediction for each MC sample of each observation
    in this batch.  need to distill the multiple preds from each MC into a single
    pred for this observation.  also get accuracy. use true probs to get ROC, PR curves in sklearn
    """
    all_probs = tf.exp(preds[:,1] - tf.reduce_logsumexp(preds, axis = 1)) #normalize; and drop a dim so only prob of positive case
    N = tf.cast(tf.shape(preds)[0]/n_mc_smps,tf.int32) #actual number of observations in preds, collapsing MC samples                    

    #predicted probability per observation; collapse the MC samples
    probs = tf.zeros([0]) #store all samples in a list, then concat into tensor at end
    #setup tf while loop (have to use this bc loop size is variable)
    def cond(i,probs):
        return i < N
    def body(i,probs):
        probs = tf.concat([probs,[tf.reduce_mean(tf.slice(all_probs,[i*n_mc_smps],[n_mc_smps]))]],0)
        return i+1,probs    
    i = tf.constant(0)
    i,probs = tf.while_loop(cond,body,loop_vars=[i,probs],shape_invariants=[i.get_shape(),tf.TensorShape([None])])

    #compare to truth; just use cutoff of 0.5 for right now to get accuracy
    correct_pred = tf.equal(tf.cast(tf.greater(probs,0.5),tf.int32), O)
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) 
    return probs,accuracy
项目:dcgan    作者:zsdonghao    | 项目源码 | 文件源码
def retrieve_seq_length_op2(data):
    """An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)],
    it can be used when the features of padding (on right hand side) are all zeros.

    Parameters
    -----------
    data : tensor
        [batch_size, n_step(max)] with zero padding on right hand side.

    Examples
    --------
    >>> data = [[1,2,0,0,0],
    ...         [1,2,3,0,0],
    ...         [1,2,6,1,0]]
    >>> o = retrieve_seq_length_op2(data)
    >>> sess = tf.InteractiveSession()
    >>> tl.layers.initialize_global_variables(sess)
    >>> print(o.eval())
    ... [2 3 4]
    """
    return tf.reduce_sum(tf.cast(tf.greater(data, tf.zeros_like(data)), tf.int32), 1)
项目:Image-Captioning    作者:zsdonghao    | 项目源码 | 文件源码
def retrieve_seq_length_op2(data):
    """An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)],
    it can be used when the features of padding (on right hand side) are all zeros.

    Parameters
    -----------
    data : tensor
        [batch_size, n_step(max)] with zero padding on right hand side.

    Examples
    --------
    >>> data = [[1,2,0,0,0],
    ...         [1,2,3,0,0],
    ...         [1,2,6,1,0]]
    >>> o = retrieve_seq_length_op2(data)
    >>> sess = tf.InteractiveSession()
    >>> tl.layers.initialize_global_variables(sess)
    >>> print(o.eval())
    ... [2 3 4]
    """
    return tf.reduce_sum(tf.cast(tf.greater(data, tf.zeros_like(data)), tf.int32), 1)


# Dynamic RNN
项目:pruning_with_tensorflow    作者:ex4sperans    | 项目源码 | 文件源码
def _apply_prune_on_grads(self,
                              grads_and_vars: list,
                              threshold: float):

        # we need to make gradients correspondent
        # to the pruned weights to be zero

        grads_and_vars_sparse = []

        for grad, var in grads_and_vars:
            if 'weights' in var.name:
                small_weights = tf.greater(threshold, tf.abs(var))
                mask = tf.cast(tf.logical_not(small_weights), tf.float32)
                grad = grad * mask

            grads_and_vars_sparse.append((grad, var))

        return grads_and_vars_sparse
项目:DAVIS-2016-Chanllege-Solution    作者:tangyuhao    | 项目源码 | 文件源码
def bboxes_filter_center(labels, bboxes, margins=[0., 0., 0., 0.],
                         scope=None):
    """Filter out bounding boxes whose center are not in
    the rectangle [0, 0, 1, 1] + margins. The margin Tensor
    can be used to enforce or loosen this condition.

    Return:
      labels, bboxes: Filtered elements.
    """
    with tf.name_scope(scope, 'bboxes_filter', [labels, bboxes]):
        cy = (bboxes[:, 0] + bboxes[:, 2]) / 2.
        cx = (bboxes[:, 1] + bboxes[:, 3]) / 2.
        mask = tf.greater(cy, margins[0])
        mask = tf.logical_and(mask, tf.greater(cx, margins[1]))
        mask = tf.logical_and(mask, tf.less(cx, 1. + margins[2]))
        mask = tf.logical_and(mask, tf.less(cx, 1. + margins[3]))
        # Boolean masking...
        labels = tf.boolean_mask(labels, mask)
        bboxes = tf.boolean_mask(bboxes, mask)
        return labels, bboxes
项目:tensorflow    作者:luyishisi    | 项目源码 | 文件源码
def test_gather_with_dynamic_indexing(self):
    corners = tf.constant([4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]
                          ])
    weights = tf.constant([.5, .3, .7, .1, .9], tf.float32)
    indices = tf.reshape(tf.where(tf.greater(weights, 0.4)), [-1])
    expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
    expected_weights = [.5, .7, .9]

    boxes = box_list.BoxList(corners)
    boxes.add_field('weights', weights)
    subset = box_list_ops.gather(boxes, indices, ['weights'])
    with self.test_session() as sess:
      subset_output, weights_output = sess.run([subset.get(), subset.get_field(
          'weights')])
      self.assertAllClose(subset_output, expected_subset)
      self.assertAllClose(weights_output, expected_weights)
项目:tensorflow    作者:luyishisi    | 项目源码 | 文件源码
def test_visualize_boxes_in_image(self):
    image = tf.zeros((6, 4, 3))
    corners = tf.constant([[0, 0, 5, 3],
                           [0, 0, 3, 2]], tf.float32)
    boxes = box_list.BoxList(corners)
    image_and_boxes = box_list_ops.visualize_boxes_in_image(image, boxes)
    image_and_boxes_bw = tf.to_float(
        tf.greater(tf.reduce_sum(image_and_boxes, 2), 0.0))
    exp_result = [[1, 1, 1, 0],
                  [1, 1, 1, 0],
                  [1, 1, 1, 0],
                  [1, 0, 1, 0],
                  [1, 1, 1, 0],
                  [0, 0, 0, 0]]
    with self.test_session() as sess:
      output = sess.run(image_and_boxes_bw)
      self.assertAllEqual(output.astype(int), exp_result)
项目:tensorflow    作者:luyishisi    | 项目源码 | 文件源码
def _padded_batched_proposals_indicator(self,
                                          num_proposals,
                                          max_num_proposals):
    """Creates indicator matrix of non-pad elements of padded batch proposals.

    Args:
      num_proposals: Tensor of type tf.int32 with shape [batch_size].
      max_num_proposals: Maximum number of proposals per image (integer).

    Returns:
      A Tensor of type tf.bool with shape [batch_size, max_num_proposals].
    """
    batch_size = tf.size(num_proposals)
    tiled_num_proposals = tf.tile(
        tf.expand_dims(num_proposals, 1), [1, max_num_proposals])
    tiled_proposal_index = tf.tile(
        tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1])
    return tf.greater(tiled_num_proposals, tiled_proposal_index)
项目:tensorflow    作者:luyishisi    | 项目源码 | 文件源码
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
  """Filters out groundtruth with no bounding boxes.

  Args:
    tensor_dict: a dictionary of following groundtruth tensors -
      fields.InputDataFields.groundtruth_boxes
      fields.InputDataFields.groundtruth_classes
      fields.InputDataFields.groundtruth_is_crowd
      fields.InputDataFields.groundtruth_area
      fields.InputDataFields.groundtruth_label_types

  Returns:
    a dictionary of tensors containing only the groundtruth that have bounding
    boxes.
  """
  groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
  nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
      tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
  valid_indicator_vector = tf.logical_not(nan_indicator_vector)
  valid_indices = tf.where(valid_indicator_vector)

  return retain_groundtruth(tensor_dict, valid_indices)
项目:tensorflow    作者:luyishisi    | 项目源码 | 文件源码
def pad_tensor(t, length):
  """Pads the input tensor with 0s along the first dimension up to the length.

  Args:
    t: the input tensor, assuming the rank is at least 1.
    length: a tensor of shape [1]  or an integer, indicating the first dimension
      of the input tensor t after padding, assuming length <= t.shape[0].

  Returns:
    padded_t: the padded tensor, whose first dimension is length. If the length
      is an integer, the first dimension of padded_t is set to length
      statically.
  """
  t_rank = tf.rank(t)
  t_shape = tf.shape(t)
  t_d0 = t_shape[0]
  pad_d0 = tf.expand_dims(length - t_d0, 0)
  pad_shape = tf.cond(
      tf.greater(t_rank, 1), lambda: tf.concat([pad_d0, t_shape[1:]], 0),
      lambda: tf.expand_dims(length - t_d0, 0))
  padded_t = tf.concat([t, tf.zeros(pad_shape, dtype=t.dtype)], 0)
  if not _is_tensor(length):
    padded_t = _set_dim_0(padded_t, length)
  return padded_t
项目:tensorflow    作者:luyishisi    | 项目源码 | 文件源码
def pad_or_clip_tensor(t, length):
  """Pad or clip the input tensor along the first dimension.

  Args:
    t: the input tensor, assuming the rank is at least 1.
    length: a tensor of shape [1]  or an integer, indicating the first dimension
      of the input tensor t after processing.

  Returns:
    processed_t: the processed tensor, whose first dimension is length. If the
      length is an integer, the first dimension of the processed tensor is set
      to length statically.
  """
  processed_t = tf.cond(
      tf.greater(tf.shape(t)[0], length),
      lambda: clip_tensor(t, length),
      lambda: pad_tensor(t, length))
  if not _is_tensor(length):
    processed_t = _set_dim_0(processed_t, length)
  return processed_t
项目:tensorrec    作者:jfkirk    | 项目源码 | 文件源码
def separation_loss(tf_prediction_serial, tf_interactions_serial, **kwargs):
    """
    This loss function models the explicit positive and negative interaction predictions as normal distributions and
    returns the probability of overlap between the two distributions.
    :param tf_prediction_serial:
    :param tf_interactions_serial:
    :return:
    """

    tf_positive_mask = tf.greater(tf_interactions_serial, 0.0)
    tf_negative_mask = tf.less_equal(tf_interactions_serial, 0.0)

    tf_positive_predictions = tf.boolean_mask(tf_prediction_serial, tf_positive_mask)
    tf_negative_predictions = tf.boolean_mask(tf_prediction_serial, tf_negative_mask)

    tf_pos_mean, tf_pos_var = tf.nn.moments(tf_positive_predictions, axes=[0])
    tf_neg_mean, tf_neg_var = tf.nn.moments(tf_negative_predictions, axes=[0])

    tf_overlap_distribution = tf.contrib.distributions.Normal(loc=(tf_neg_mean - tf_pos_mean),
                                                              scale=tf.sqrt(tf_neg_var + tf_pos_var))

    loss = 1.0 - tf_overlap_distribution.cdf(0.0)
    return loss
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def create_model(self,
                     model_input,
                     vocab_size,
                     num_frames,
                     **unused_params):

        shape = model_input.get_shape().as_list()
        frames_sum = tf.reduce_sum(tf.abs(model_input),axis=2)
        frames_true = tf.ones(tf.shape(frames_sum))
        frames_false = tf.zeros(tf.shape(frames_sum))
        frames_bool = tf.reshape(tf.where(tf.greater(frames_sum, frames_false), frames_true, frames_false),[-1,shape[1],1])

        activation_1 = tf.reduce_max(model_input, axis=1)
        activation_2 = tf.reduce_sum(model_input*frames_bool, axis=1)/(tf.reduce_sum(frames_bool, axis=1)+1e-6)
        activation_3 = tf.reduce_min(model_input, axis=1)

        model_input_1, final_probilities_1 = self.sub_moe(activation_1,vocab_size,scopename="_max")
        model_input_2, final_probilities_2 = self.sub_moe(activation_2,vocab_size,scopename="_mean")
        model_input_3, final_probilities_3 = self.sub_moe(activation_3,vocab_size,scopename="_min")
        final_probilities = tf.stack((final_probilities_1,final_probilities_2,final_probilities_3),axis=1)
        weight2d = tf.get_variable("ensemble_weight2d",
                                   shape=[shape[2], 3, vocab_size],
                                   regularizer=slim.l2_regularizer(1.0e-8))
        activations = tf.stack((model_input_1, model_input_2, model_input_3), axis=2)
        weight = tf.nn.softmax(tf.einsum("aij,ijk->ajk", activations, weight2d), dim=1)
        result = {}
        result["prediction_frames"] = tf.reshape(final_probilities,[-1,vocab_size])
        result["predictions"] = tf.reduce_sum(final_probilities*weight,axis=1)
        return result
项目:recurrent-entity-networks    作者:jimfleming    | 项目源码 | 文件源码
def __call__(self, inputs, state, scope=None):
        with tf.variable_scope(scope or type(self).__name__, initializer=self._initializer):
            U = tf.get_variable('U', [self._num_units_per_block, self._num_units_per_block],
                                initializer=self._recurrent_initializer)
            V = tf.get_variable('V', [self._num_units_per_block, self._num_units_per_block],
                                initializer=self._recurrent_initializer)
            W = tf.get_variable('W', [self._num_units_per_block, self._num_units_per_block],
                                initializer=self._recurrent_initializer)

            U_bias = tf.get_variable('U_bias', [self._num_units_per_block])

            # Split the hidden state into blocks (each U, V, W are shared across blocks).
            state = tf.split(state, self._num_blocks, axis=1)

            next_states = []
            for j, state_j in enumerate(state): # Hidden State (j)
                key_j = tf.expand_dims(self._keys[j], axis=0)
                gate_j = self.get_gate(state_j, key_j, inputs)
                candidate_j = self.get_candidate(state_j, key_j, inputs, U, V, W, U_bias)

                # Equation 4: h_j <- h_j + g_j * h_j^~
                # Perform an update of the hidden state (memory).
                state_j_next = state_j + tf.expand_dims(gate_j, -1) * candidate_j

                # Equation 5: h_j <- h_j / \norm{h_j}
                # Forget previous memories by normalization.
                state_j_next_norm = tf.norm(
                    tensor=state_j_next,
                    ord='euclidean',
                    axis=-1,
                    keep_dims=True)
                state_j_next_norm = tf.where(
                    tf.greater(state_j_next_norm, 0.0),
                    state_j_next_norm,
                    tf.ones_like(state_j_next_norm))
                state_j_next = state_j_next / state_j_next_norm

                next_states.append(state_j_next)
            state_next = tf.concat(next_states, axis=1)
        return state_next, state_next
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def greater(x, y):
    '''Element-wise truth value of (x > y).
    Returns a bool tensor.
    '''
    return tf.greater(x, y)
项目:blitznet    作者:dvornikita    | 项目源码 | 文件源码
def nms(self, localization, confidence, tiling):
        good_bboxes = decode_bboxes(localization, tiling)

        not_crap_mask = tf.reduce_max(confidence[:, 1:], axis=-1) >= args.conf_thresh
        good_bboxes = tf.boolean_mask(good_bboxes, not_crap_mask)
        confidence = tf.boolean_mask(confidence, not_crap_mask)

        self.detection_list = []
        self.score_list = []
        for i in range(1, self.loader.num_classes):
            class_mask = tf.greater(confidence[:, i], args.conf_thresh)
            class_scores = tf.boolean_mask(confidence[:, i], class_mask)
            class_bboxes = tf.boolean_mask(good_bboxes, class_mask)

            K = tf.minimum(tf.size(class_scores), args.top_k_nms)
            _, top_k_inds = tf.nn.top_k(class_scores, K)
            top_class_scores = tf.gather(class_scores, top_k_inds)
            top_class_bboxes = tf.gather(class_bboxes, top_k_inds)

            final_inds = tf.image.non_max_suppression(top_class_bboxes,
                                                        top_class_scores,
                                                        max_output_size=args.top_k_after_nms,
                                                        iou_threshold=args.nms_thresh)

            final_class_bboxes = tf.gather(top_class_bboxes, final_inds)
            final_scores = tf.gather(top_class_scores, final_inds)
            self.detection_list.append(final_class_bboxes)
            self.score_list.append(final_scores)
项目:HyperGAN    作者:255BITS    | 项目源码 | 文件源码
def binary(config, gan, net):
    net = tf.greater(net, 0)
    net = tf.cast(net, tf.float32)
    return net
项目:baselines    作者:openai    | 项目源码 | 文件源码
def detectMinVal(input_mat, var, threshold=1e-6, name='', debug=False):
    eigen_min = tf.reduce_min(input_mat)
    eigen_max = tf.reduce_max(input_mat)
    eigen_ratio = eigen_max / eigen_min
    input_mat_clipped = clipoutNeg(input_mat, threshold)

    if debug:
        input_mat_clipped = tf.cond(tf.logical_or(tf.greater(eigen_ratio, 0.), tf.less(eigen_ratio, -500)), lambda: input_mat_clipped, lambda: tf.Print(
            input_mat_clipped, [tf.convert_to_tensor('screwed ratio ' + name + ' eigen values!!!'), tf.convert_to_tensor(var.name), eigen_min, eigen_max, eigen_ratio]))

    return input_mat_clipped
项目:magenta    作者:tensorflow    | 项目源码 | 文件源码
def f1_score(precision, recall):
  """Creates an op for calculating the F1 score.

  Args:
    precision: A tensor representing precision.
    recall: A tensor representing recall.

  Returns:
    A tensor with the result of the F1 calculation.
  """
  return tf.where(
      tf.greater(precision + recall, 0), 2 * (
          (precision * recall) / (precision + recall)), 0)
项目:magenta    作者:tensorflow    | 项目源码 | 文件源码
def accuracy_without_true_negatives(true_positives, false_positives,
                                    false_negatives):
  """Creates an op for calculating accuracy without true negatives.

  Args:
    true_positives: A tensor representing true_positives.
    false_positives: A tensor representing false_positives.
    false_negatives: A tensor representing false_negatives.

  Returns:
    A tensor with the result of the calculation.
  """
  return tf.where(
      tf.greater(true_positives + false_positives + false_negatives, 0),
      true_positives / (true_positives + false_positives + false_negatives), 0)
项目:magenta    作者:tensorflow    | 项目源码 | 文件源码
def _frame_metrics(frame_labels, frame_predictions):
  """Calculate frame-based metrics."""
  frame_labels_bool = tf.cast(frame_labels, tf.bool)
  frame_predictions_bool = tf.cast(frame_predictions, tf.bool)

  frame_true_positives = tf.reduce_sum(tf.to_float(tf.logical_and(
      tf.equal(frame_labels_bool, True),
      tf.equal(frame_predictions_bool, True))))
  frame_false_positives = tf.reduce_sum(tf.to_float(tf.logical_and(
      tf.equal(frame_labels_bool, False),
      tf.equal(frame_predictions_bool, True))))
  frame_false_negatives = tf.reduce_sum(tf.to_float(tf.logical_and(
      tf.equal(frame_labels_bool, True),
      tf.equal(frame_predictions_bool, False))))
  frame_accuracy = tf.reduce_sum(tf.to_float(
      tf.equal(frame_labels_bool, frame_predictions_bool)))

  frame_precision = tf.where(
      tf.greater(frame_true_positives + frame_false_positives, 0),
      tf.div(frame_true_positives,
             frame_true_positives + frame_false_positives),
      0)
  frame_recall = tf.where(
      tf.greater(frame_true_positives + frame_false_negatives, 0),
      tf.div(frame_true_positives,
             frame_true_positives + frame_false_negatives),
      0)
  frame_f1_score = f1_score(frame_precision, frame_recall)
  frame_accuracy_without_true_negatives = accuracy_without_true_negatives(
      frame_true_positives, frame_false_positives, frame_false_negatives)

  return {
      'true_positives': frame_true_positives,
      'false_positives': frame_false_positives,
      'false_negatives': frame_false_negatives,
      'accuracy': frame_accuracy,
      'accuracy_without_true_negatives': frame_accuracy_without_true_negatives,
      'precision': frame_precision,
      'recall': frame_recall,
      'f1_score': frame_f1_score,
  }
项目:dtnn    作者:atomistic-machine-learning    | 项目源码 | 文件源码
def calc_errors(self, output):
        Z = output['numbers']
        N = tf.reduce_sum(tf.cast(tf.greater(Z, 0), tf.float32), 1)

        tgt = output[self.target]
        pred = output[self.prediction]
        if self.idx is not None:
            tgt = tgt[:, self.idx]
            pred = pred[:, self.idx]
        return tf.abs(tgt - pred) / N
项目:dtnn    作者:atomistic-machine-learning    | 项目源码 | 文件源码
def calc_errors(self, output):
        Z = output['numbers']
        N = tf.reduce_sum(tf.cast(tf.greater(Z, 0), tf.float32), 1)

        tgt = output[self.target]
        pred = output[self.prediction]
        if self.idx is not None:
            tgt = tgt[:, self.idx]
            pred = pred[:, self.idx]
        return ((tgt - pred) / N) ** 2
项目:zhusuan    作者:thu-ml    | 项目源码 | 文件源码
def __gt__(self, other):
        return tf.greater(self, other)
项目:kaggle_redefining_cancer_treatment    作者:jorgemf    | 项目源码 | 文件源码
def _embed_sequence_with_length(self, embeddings, input_text):
        # calculate max length of the input_text
        mask_words = tf.greater(input_text, 0)  # true for words false for padding
        words_length = tf.reduce_sum(tf.cast(mask_words, tf.int32), -1)
        mask_sentences = tf.greater(words_length, 0)
        sentences_length = tf.reduce_sum(tf.cast(mask_sentences, tf.int32), 1)
        input_text = tf.add(input_text, 1)
        embedded_sequence = tf.nn.embedding_lookup(embeddings, input_text)
        return embedded_sequence, sentences_length, words_length
项目:QDREN    作者:andreamad8    | 项目源码 | 文件源码
def __call__(self, inputs, state, scope=None):
        with tf.variable_scope(scope or type(self).__name__, initializer=self._initializer):
            # Split the hidden state into blocks (each U, V, W are shared across blocks).

            U = tf.get_variable('U', [self._num_units_per_block, self._num_units_per_block])
            V = tf.get_variable('V', [self._num_units_per_block, self._num_units_per_block])
            W = tf.get_variable('W', [self._num_units_per_block, self._num_units_per_block])

            b = tf.get_variable('biasU',[self._num_units_per_block])

            state = tf.split(state, self._num_blocks, 1)
            next_states = []
            for j, state_j in enumerate(state): # Hidden State (j)
                key_j = self._keys[j]
                gate_j = self.get_gate(state_j, key_j, inputs)
                candidate_j = self.get_candidate(state_j, key_j, inputs, U, V, W, b)

                # Equation 4: h_j <- h_j + g_j * h_j^~
                # Perform an update of the hidden state (memory).
                state_j_next = state_j + tf.expand_dims(gate_j, -1) * candidate_j

                # # Forget previous memories by normalization.
                state_j_next = tf.nn.l2_normalize(state_j_next, -1) # TODO: Is epsilon necessary?

                # Equation 5: h_j <- h_j / \norm{h_j}
                # Forget previous memories by normalization.
                # state_j_next_norm = tf.norm(tensor=state_j_next,
                #                             ord='euclidean',
                #                             axis=-1,
                #                             keep_dims=True)
                # state_j_next_norm = tf.where(
                #     tf.greater(state_j_next_norm, 0.0),
                #     state_j_next_norm,
                #     tf.ones_like(state_j_next_norm))
                # state_j_next = state_j_next / state_j_next_norm


                next_states.append(state_j_next)
            state_next = tf.concat(next_states, 1)
        return state_next, state_next
项目:QDREN    作者:andreamad8    | 项目源码 | 文件源码
def __call__(self, inputs, state, scope=None):
        with tf.variable_scope(scope or type(self).__name__, initializer=self._initializer):
            # Split the hidden state into blocks (each U, V, W are shared across blocks).

            U = tf.get_variable('U', [self._num_units_per_block, self._num_units_per_block])
            V = tf.get_variable('V', [self._num_units_per_block, self._num_units_per_block])
            W = tf.get_variable('W', [self._num_units_per_block, self._num_units_per_block])

            b = tf.get_variable('biasU',[self._num_units_per_block])

            state = tf.split(state, self._num_blocks, 1)
            next_states = []
            for j, state_j in enumerate(state): # Hidden State (j)
                key_j = self._keys[j]
                gate_j = self.get_gate(state_j, key_j, inputs)
                candidate_j = self.get_candidate(state_j, key_j, inputs, U, V, W, b)

                # Equation 4: h_j <- h_j + g_j * h_j^~
                # Perform an update of the hidden state (memory).
                state_j_next = state_j + tf.expand_dims(gate_j, -1) * candidate_j

                # # Forget previous memories by normalization.
                # Equation 5: h_j <- h_j / \norm{h_j}
                state_j_next = tf.nn.l2_normalize(state_j_next, -1) # TODO: Is epsilon necessary?


                # Forget previous memories by normalization.
                # state_j_next_norm = tf.norm(tensor=state_j_next,
                #                             ord='euclidean',
                #                             axis=-1,
                #                             keep_dims=True)
                # state_j_next_norm = tf.where(
                #     tf.greater(state_j_next_norm, 0.0),
                #     state_j_next_norm,
                #     tf.ones_like(state_j_next_norm))
                # state_j_next = state_j_next / state_j_next_norm


                next_states.append(state_j_next)
            state_next = tf.concat(next_states, 1)
        return state_next, state_next
项目:spoofnet-tensorflow    作者:yomna-safaa    | 项目源码 | 文件源码
def get_eval_ops(logits, labels, one_hot=False, scope='', calc_accuracy=True):
    """Evaluate the quality of the logits at predicting the label.
      Args:
        logits: Logits tensor, float - [batch_size, NUM_CLASSES].
        labels: Labels tensor, int32 - [batch_size], with values in the
          range [0, NUM_CLASSES).
      Returns:
        A scalar int32 tensor with the number of examples (out of batch_size)
        that were predicted correctly.
      """
    print('Evaluation Ops..')
    with tf.name_scope(scope):
        # For a classifier model, we can use the in_top_k Op.
        # It returns a bool tensor with shape [batch_size] that is true for
        # the examples where the label's is was in the top k (here k=1)
        # of all logits for that example.
        # labels = tf.cast(labels, tf.int64)
        if one_hot:
            labels = tf.argmax(labels, 1)
        top_1_op = tf.nn.in_top_k(logits, labels, 1)
        num_correct = tf.reduce_sum(tf.cast(top_1_op, tf.float32))

        if calc_accuracy:
            acc_percent = tf.divide(num_correct, labels.shape[0].value)
        else:
            acc_percent = tf.constant(0.0)

        # =============
        y_const = tf.constant(-1, dtype=labels.dtype)
        y_greater = tf.greater(labels, y_const)
        n_all = tf.reduce_sum(tf.cast(y_greater, tf.float32))

        return top_1_op, acc_percent * 100.0, num_correct, n_all, labels


########################################################################
项目:densecap-tensorflow    作者:rampage644    | 项目源码 | 文件源码
def huber_loss(x, delta=1):
    coef = 0.5
    l2_mask = tf.less_equal(tf.abs(x), delta)
    l1_mask = tf.greater(tf.abs(x), delta)

    term_1 = tf.reduce_sum(coef * tf.square(tf.boolean_mask(x, l2_mask)))
    term_2 = tf.reduce_sum(delta * (tf.abs(tf.boolean_mask(x, l1_mask)) - coef * delta))

    return term_1 + term_2
项目:densecap-tensorflow    作者:rampage644    | 项目源码 | 文件源码
def _box_params_loss(self, ground_truth, ground_truth_num,
                         anchor_centers, offsets, proposals_num):
        # ground_truth shape is M x 4, where M is count and 4 are y,x,h,w
        ground_truth = tf.expand_dims(ground_truth, axis=0)
        ground_truth = tf.tile(ground_truth, [proposals_num, 1, 1])
        # anchor_centers shape is N x 4 where N is count and 4 are ya,xa,ha,wa
        anchor_centers = tf.expand_dims(anchor_centers, axis=1)
        anchor_centers = tf.tile(anchor_centers, [1, ground_truth_num, 1])
        # pos_sample_mask shape is N x M, True are for positive proposals and, hence,
        # for anchor centers
        pos_sample_mask = tf.greater(self.iou_metric, 0.7)
        # convert mask shape from N to N x 1 to make it broadcastable with pos_sample_mask
        mask = tf.expand_dims(self.cross_boundary_mask, axis=1)
        # convert resulting shape to align it with offsets
        mask = tf.expand_dims(tf.cast(pos_sample_mask & mask, tf.float32), axis=2)

        y_anchor, x_anchor, height_anchor, width_anchor = tf.unstack(anchor_centers, axis=2)
        y_ground_truth, x_ground_truth, height_ground_truth, width_ground_truth = tf.unstack(
            ground_truth, axis=2)

        # idea is to calculate N x M tx, ty, tw, th for ground truth boxes
        # for every proposal. Then we caclulate loss, multiply it with mask
        # to filter out non-positive samples and sum to one

        # each shape is N x M
        tx_ground_truth = (x_ground_truth - x_anchor) / width_anchor
        ty_ground_truth = (y_ground_truth - y_anchor) / height_anchor
        tw_ground_truth = tf.log(width_ground_truth / width_anchor)
        th_ground_truth = tf.log(height_ground_truth / height_anchor)

        gt_params = tf.stack(
            [ty_ground_truth, tx_ground_truth, th_ground_truth, tw_ground_truth], axis=2)

        offsets = tf.expand_dims(offsets, axis=1)
        offsets = tf.tile(offsets, [1, ground_truth_num, 1])

        return huber_loss((offsets - gt_params) * mask)
项目:antgo    作者:jianzfb    | 项目源码 | 文件源码
def _safe_div(numerator, denominator, name):
    """Divides two values, returning 0 if the denominator is <= 0.
    Args:
      numerator: A real `Tensor`.
      denominator: A real `Tensor`, with dtype matching `numerator`.
      name: Name for the returned op.
    Returns:
      0 if `denominator` <= 0, else `numerator` / `denominator`
    """
    return tf.where(
        math_ops.greater(denominator, 0),
        math_ops.divide(numerator, denominator),
        tf.zeros_like(numerator),
        name=name)
项目:antgo    作者:jianzfb    | 项目源码 | 文件源码
def tf_ssd_bboxes_select_layer_all_classes(predictions_layer, localizations_layer,
                                           select_threshold=None):
    """Extract classes, scores and bounding boxes from features in one layer.
     Batch-compatible: inputs are supposed to have batch-type shapes.

     Args:
       predictions_layer: A SSD prediction layer;
       localizations_layer: A SSD localization layer;
      select_threshold: Classification threshold for selecting a box. If None,
        select boxes whose classification score is higher than 'no class'.
     Return:
      classes, scores, bboxes: Input Tensors.
     """
    # Reshape features: Batches x N x N_labels | 4
    p_shape = tfe.get_shape(predictions_layer)
    predictions_layer = tf.reshape(predictions_layer,
                                   tf.stack([p_shape[0], -1, p_shape[-1]]))
    l_shape = tfe.get_shape(localizations_layer)
    localizations_layer = tf.reshape(localizations_layer,
                                     tf.stack([l_shape[0], -1, l_shape[-1]]))
    # Boxes selection: use threshold or score > no-label criteria.
    if select_threshold is None or select_threshold == 0:
        # Class prediction and scores: assign 0. to 0-class
        classes = tf.argmax(predictions_layer, axis=2)
        scores = tf.reduce_max(predictions_layer, axis=2)
        scores = scores * tf.cast(classes > 0, scores.dtype)
    else:
        sub_predictions = predictions_layer[:, :, 1:]
        classes = tf.argmax(sub_predictions, axis=2) + 1
        scores = tf.reduce_max(sub_predictions, axis=2)
        # Only keep predictions higher than threshold.
        mask = tf.greater(scores, select_threshold)
        classes = classes * tf.cast(mask, classes.dtype)
        scores = scores * tf.cast(mask, scores.dtype)
    # Assume localization layer already decoded.
    bboxes = localizations_layer
    return classes, scores, bboxes
项目:LiTeFlow    作者:petrux    | 项目源码 | 文件源码
def _fit(tensor, width):
    actual = tf.shape(tensor)[-1]
    result = tf.cond(tf.greater(actual, width),
                     lambda: _trim(tensor, width),
                     lambda: _pad(tensor, width))
    return result
项目:keraflow    作者:ipod825    | 项目源码 | 文件源码
def gt(self, x, y):
        return tf.greater(x, y)