Python tensorflow 模块,RunOptions() 实例源码

我们从Python开源项目中,提取了以下39个代码示例,用于说明如何使用tensorflow.RunOptions()

项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def _refresh_status(self, sess):
        fetches = {
            "l_D": self.loss['l_D'],
            "l_G": self.loss['l_G'], 
            "step": self.opt['global_step'],
        }
        result = sess.run(
            fetches=fetches,
            # options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
            # run_metadata=run_metadata,
        )

        # trace = timeline.Timeline(step_stats=run_metadata.step_stats)
        # with open(os.path.join(dirs['logdir'], 'timeline.ctf.json'), 'w') as fp:
        #     fp.write(trace.generate_chrome_trace_format())

        # Message
        msg = 'Iter {:05d}: '.format(result['step'])
        msg += 'l_D={:.3e} '.format(result['l_D'])
        msg += 'l_G={:.3e} '.format(result['l_G'])        
        print('\r{}'.format(msg), end='', flush=True)
        logging.info(msg)
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def _refresh_status(self, sess):
        fetches = {
            "D_KL": self.loss['D_KL'],
            "logP": self.loss['logP'],
            "step": self.opt['global_step'],
        }
        result = sess.run(
            fetches=fetches,
            # options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
            # run_metadata=run_metadata,
        )

        # trace = timeline.Timeline(step_stats=run_metadata.step_stats)
        # with open(os.path.join(dirs['logdir'], 'timeline.ctf.json'), 'w') as fp:
        #     fp.write(trace.generate_chrome_trace_format())

        # Message
        msg = 'Iter {:05d}: '.format(result['step'])
        msg += 'log P(x|z, y) = {:.3e} '.format(result['logP'])
        msg += 'D_KL(z) = {:.3e} '.format(result['D_KL'])
        print('\r{}'.format(msg), end='', flush=True)
        logging.info(msg)
项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def __init__(self, output_file_name=None, output_directory=None,
                 each_time=None, **kwargs):
        self.output_file_name = output_file_name
        self.output_directory = output_directory
        self.each_time = each_time
        self.local_run_metadata = None
        if self.each_time:
            warnings.warn("Outputting a trace for each run. "
                          "May result in large disk usage.")

        super(TracerSession, self).__init__(**kwargs)
        self.counter = 0
        self.profiler_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        if self.output_directory is not None:
            if os.path.isfile(self.output_directory):
                raise IOError("In tracer: given directory name is a file.")
            if not os.path.isdir(self.output_directory):
                os.mkdir(self.output_directory)
项目:lang2program    作者:kelvinguu    | 项目源码 | 文件源码
def run(self, fetches, feed_dict=None):
        """like Session.run, but return a Timeline object in Chrome trace format (JSON).

        Save the json to a file, go to chrome://tracing, and open the file.

        Args:
            fetches
            feed_dict

        Returns:
            dict: a JSON dict
        """
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata)

        # Create the Timeline object, and write it to a json
        tl = timeline.Timeline(run_metadata.step_stats)
        ctf = tl.generate_chrome_trace_format()
        return json.loads(ctf)
项目:lang2program    作者:kelvinguu    | 项目源码 | 文件源码
def run(self, fetches, feed_dict=None):
        """like Session.run, but return a Timeline object in Chrome trace format (JSON).

        Save the json to a file, go to chrome://tracing, and open the file.

        Args:
            fetches
            feed_dict

        Returns:
            dict: a JSON dict
        """
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata)

        # Create the Timeline object, and write it to a json
        tl = timeline.Timeline(run_metadata.step_stats)
        ctf = tl.generate_chrome_trace_format()
        return json.loads(ctf)
项目:albemarle    作者:SeanTater    | 项目源码 | 文件源码
def train_it(sess, step=1):
    _pat_chars_i, _pat_lens = get_batch(__batch_size)
    inputs = {
        pat_chars_i: _pat_chars_i,
        pat_lens: _pat_lens}

    # Run optimization op (backprop)
    #run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    #run_metadata = tf.RunMetadata()
    #sess.run(optimizer, feed_dict=inputs, options=run_options, run_metadata=run_metadata)
    sess.run(optimizer, feed_dict=inputs)
    #with open('timeline.json', 'w') as f:
    #    f.write(
    #        timeline.Timeline(run_metadata.step_stats)
    #            .generate_chrome_trace_format())

    if step % display_step == 0:
        # Calculate batch loss
        cost_f = sess.run(cost, feed_dict=inputs)
        print ("Iter {}, cost= {:.6f}".format(
            str(step*__batch_size), cost_f))
项目:dvae    作者:dojoteef    | 项目源码 | 文件源码
def optimize(self, data, with_metrics=False, with_trace=False):
        """ Optimize a single batch """
        run_metadata = tf.RunMetadata() if with_trace else None
        trace = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) if with_trace else None

        _, metrics = self.run(
            self.training_operation, data,
            run_options=trace, run_metadata=run_metadata)

        if with_metrics:
            self.timer_update()
            steps, elapsed = self.elapsed()
            num_devices = len(self.towers)
            examples = steps * self.batch_size * num_devices
            print('Step {}, examples/sec {:.3f}, ms/batch {:.1f}'.format(
                self.global_step, examples / elapsed, 1000 * elapsed / num_devices))

            self.output_metrics(data, metrics)
            self.write_summaries(data)

        if with_trace:
            step = '{}/step{}'.format(self.name, self.global_step)
            self.summary_writer.add_run_metadata(run_metadata, step, global_step=self.global_step)
项目:npfl114    作者:ufal    | 项目源码 | 文件源码
def train(self, images, labels, summaries=False, run_metadata=False):
        if (summaries or run_metadata) and not self.summary_writer:
            raise ValueError("Logdir is required for summaries or run_metadata.")

        args = {"feed_dict": {self.images: images, self.labels: labels}}
        targets = [self.training]
        if summaries:
            targets.append(self.summaries["training"])
        if run_metadata:
            args["options"] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            args["run_metadata"] = tf.RunMetadata()

        results = self.session.run(targets, **args)
        if summaries:
            self.summary_writer.add_summary(results[-1], self.training_step - 1)
        if run_metadata:
            self.summary_writer.add_run_metadata(args["run_metadata"], "step{:05}".format(self.training_step - 1))
项目:npfl114    作者:ufal    | 项目源码 | 文件源码
def train(self, images, labels, summaries=False, run_metadata=False):
        if (summaries or run_metadata) and not self.summary_writer:
            raise ValueError("Logdir is required for summaries or run_metadata.")

        args = {"feed_dict": {self.images: images, self.labels: labels}}
        targets = [self.training]
        if summaries:
            targets.append(self.summaries["training"])
        if run_metadata:
            args["options"] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            args["run_metadata"] = tf.RunMetadata()

        results = self.session.run(targets, **args)
        if summaries:
            self.summary_writer.add_summary(results[-1], self.training_step - 1)
        if run_metadata:
            self.summary_writer.add_run_metadata(args["run_metadata"], "step{:05}".format(self.training_step - 1))
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def _createTestGraphAndRunOptions(self, sess, gated_grpc=True):
    a = tf.Variable([1.0], name='a')
    b = tf.Variable([2.0], name='b')
    c = tf.Variable([3.0], name='c')
    d = tf.Variable([4.0], name='d')
    x = tf.add(a, b, name='x')
    y = tf.add(c, d, name='y')
    z = tf.add(x, y, name='z')

    run_options = tf.RunOptions(output_partition_graphs=True)
    debug_op = 'DebugIdentity'
    if gated_grpc:
      debug_op += '(gated_grpc=True)'
    tf_debug.watch_graph(run_options,
                         sess.graph,
                         debug_ops=debug_op,
                         debug_urls=self.debug_server_url)
    return z, run_options
项目:seq2seq    作者:google    | 项目源码 | 文件源码
def before_run(self, _run_context):
    if not self.is_chief or self._done:
      return
    if not self._active:
      return tf.train.SessionRunArgs(self._global_step)
    else:
      tf.logging.info("Performing full trace on next step.")
      run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101
      return tf.train.SessionRunArgs(self._global_step, options=run_options)
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def _refresh_status(self, sess):
        fetches = {
            "D_KL": self.loss['D_KL'],
            "logP": self.loss['logP'],
            "step": self.opt['global_step'],
        }
        result = sess.run(
            fetches=fetches,
            # options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
            # run_metadata=run_metadata,
        )

        # trace = timeline.Timeline(step_stats=run_metadata.step_stats)
        # with open(os.path.join(dirs['logdir'], 'timeline.ctf.json'), 'w') as fp:
        #     fp.write(trace.generate_chrome_trace_format())

        # Message
        msg = 'Iter {:05d}: '.format(result['step'])
        msg += 'log P(x|z, y) = {:.3e} '.format(result['logP'])
        msg += 'D_KL(z) = {:.3e} '.format(result['D_KL'])
        print('\r{}'.format(msg), end='', flush=True)
        logging.info(msg)


    # def _validate(self, machine, n=10):
    #     N = n * n

    #     # same row same z
    #     z = tf.random_normal(shape=[n, self.arch['z_dim']])
    #     z = tf.tile(z, [1, n])
    #     z = tf.reshape(z, [N, -1])
    #     z = tf.Variable(z, trainable=False, dtype=tf.float32)

    #     # same column same y
    #     y = tf.range(0, 10, 1, dtype=tf.int64)
    #     y = tf.reshape(y, [-1,])
    #     y = tf.tile(y, [n,])

    #     Xh = machine.generate(z, y) # 100, 64, 64, 3
    #     Xh = make_png_thumbnail(Xh, n)
    #     return Xh
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def _refresh_status(self, sess):
        fetches = {
            "D_KL": self.loss['D_KL'],
            "logP": self.loss['logP'],
            "W_dist": self.loss['W_dist'],
            "gp": self.loss['gp'],
            "step": self.opt['global_step'],
        }
        result = sess.run(
            fetches=fetches,
            # options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
            # run_metadata=run_metadata,
        )

        # trace = timeline.Timeline(step_stats=run_metadata.step_stats)
        # with open(os.path.join(dirs['logdir'], 'timeline.ctf.json'), 'w') as fp:
        #     fp.write(trace.generate_chrome_trace_format())

        # Message
        msg = 'Iter {:05d}: '.format(result['step'])
        msg += 'W_dist = {:.4e} '.format(result['W_dist'])
        msg += 'log P(x|z, y) = {:.4e} '.format(result['logP'])
        msg += 'D_KL(z) = {:.4e} '.format(result['D_KL'])
        msg += 'GP = {:.4e} '.format(result['gp'])
        print('\r{}'.format(msg), end='', flush=True)
        logging.info(msg)
项目:conv_seq2seq    作者:tobyyouup    | 项目源码 | 文件源码
def before_run(self, _run_context):
    if not self.is_chief or self._done:
      return
    if not self._active:
      return tf.train.SessionRunArgs(self._global_step)
    else:
      tf.logging.info("Performing full trace on next step.")
      run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101
      return tf.train.SessionRunArgs(self._global_step, options=run_options)
项目:tefla    作者:openAGI    | 项目源码 | 文件源码
def before_run(self, _run_context):
        if not self.is_chief or self._done:
            return
        if not self._active:
            return tf.train.SessionRunArgs(self._global_step)
        else:
            log.info("Performing full trace on next step.")
            run_options = tf.RunOptions(
                trace_level=tf.RunOptions.FULL_TRACE)
            return tf.train.SessionRunArgs(self._global_step, options=run_options)
项目:RNN-TrajModel    作者:wuhao5688    | 项目源码 | 文件源码
def __init__(self, config_path = None):
    if config_path is not None:
      self.load(config_path)
    if self.time_trace:
      self.run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
      self.run_metadata = tf.RunMetadata()
    # set workspace
    self.workspace = os.path.join(self.workspace, self.dataset_name)
    self.dataset_path = os.path.join(self.workspace, self.file_name)
    self.map_path = os.path.join(self.workspace, "map/")
    self.__set_save_path()
    if self.eval_mode and self.save_ckpt:
      print("Warning, in evaluation mode, automatically set config.save_ckpt to False")
      self.save_ckpt = False
项目:stuff    作者:yaroslavvb    | 项目源码 | 文件源码
def run_op(op):
    start_time = time.time()
    print("%10.2f ms: starting op %s\n" % ((start_time-start_time0)*1000, op.name), flush=True, end='')

    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess.run(op, options=options, run_metadata=run_metadata)
    end_time = time.time()
    print("%10.2f ms: ending op %s\n" % ((end_time-start_time0)*1000, op.name), flush=True, end='')
    run_metadatas.append(run_metadata)
项目:stuff    作者:yaroslavvb    | 项目源码 | 文件源码
def run_op(op):
    start_time = time.time()
    print("%10.2f ms: starting op %s\n" % ((start_time-start_time0)*1000, op.name), flush=True, end='')

    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess.run(op, options=options, run_metadata=run_metadata)
    end_time = time.time()
    print("%10.2f ms: ending op %s\n" % ((end_time-start_time0)*1000, op.name), flush=True, end='')
    run_metadatas.append(run_metadata)
项目:stuff    作者:yaroslavvb    | 项目源码 | 文件源码
def sessrun(*args, **kwargs):
  """Helper to do sess.run and save run_metadata"""
  global sess, run_metadata

  run_metadata = tf.RunMetadata()

  kwargs['options'] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
  kwargs['run_metadata'] = run_metadata
  result = sess.run(*args, **kwargs)
  first_entry = args[0]
  # have to do this because sess.run(tensor) is same as sess.run([tensor]) 
  if isinstance(first_entry, list):
    if len(first_entry) == 0 and len(args) == 1:
      return None
    first_entry = first_entry[0]
项目:dizzy_layer    作者:Pastromhaug    | 项目源码 | 文件源码
def run_shit():
    sess = tf.Session()
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess.run(tf.initialize_all_variables())
    train_step_ = sess.run([train_step], options=run_options, run_metadata=run_metadata,
                )#feed_dict={x: [[2,3],[5,1]]})

    tl = timeline.Timeline(run_metadata.step_stats)
    ctf = tl.generate_chrome_trace_format()
    with open('o_100.json', 'w') as f:
        f.write(ctf)
项目:automatic-summarization    作者:mozilla    | 项目源码 | 文件源码
def before_run(self, _run_context):
    if not self.is_chief or self._done:
      return
    if not self._active:
      return tf.train.SessionRunArgs(self._global_step)
    else:
      tf.logging.info("Performing full trace on next step.")
      run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101
      return tf.train.SessionRunArgs(self._global_step, options=run_options)
项目:npfl114    作者:ufal    | 项目源码 | 文件源码
def train(self, images, labels):
        self.steps += 1
        feed_dict = {self.images: images, self.labels: labels}

        if self.steps == 1:
            metadata = tf.RunMetadata()
            self.session.run(self.training, feed_dict, options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata = metadata)
            self.summary_writer.add_run_metadata(metadata, 'step1')
        elif self.steps % 100 == 0:
            _, summary = self.session.run([self.training, self.summaries['training']], feed_dict)
            self.summary_writer.add_summary(summary, self.steps)
        else:
            self.session.run(self.training, feed_dict)
项目:npfl114    作者:ufal    | 项目源码 | 文件源码
def train(self, images, labels):
        self.steps += 1
        feed_dict = {self.images: images, self.labels: labels}

        if self.steps == 1:
            metadata = tf.RunMetadata()
            self.session.run(self.training, feed_dict, options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata = metadata)
            self.summary_writer.add_run_metadata(metadata, 'step1')
        elif self.steps % 100 == 0:
            _, summary = self.session.run([self.training, self.summaries['training']], feed_dict)
            self.summary_writer.add_summary(summary, self.steps)
        else:
            self.session.run(self.training, feed_dict)
项目:thinstack-rl    作者:hans    | 项目源码 | 文件源码
def run_batch(sess, graph, batch_data, learning_rate, do_summary=True,
              is_training=True, profiler=None):
    for stack in graph.stacks:
        stack.reset(sess)

    # each batch data element has leading batch axis
    # X: (B, buffer_size, num_stacks)
    # transitions: (B, num_timesteps, num_stacks)
    # num_transitions: (B, num_stacks)
    X, transitions, num_transitions, ys = batch_data

    # Prepare feed dict
    feed = {
        graph.ys: ys,
        graph.learning_rate: learning_rate,
        graph.is_training: is_training,
    }
    for i, stack in enumerate(graph.stacks):
        # Swap batch axis to front.
        X_i = X[:, :, i].T
        transitions_i = transitions[:, :, i].T

        feed.update({stack.transitions[t]: transitions_i[t]
                     for t in range(graph.num_timesteps)})
        feed[stack.buff] = X_i
        feed[stack.num_transitions] = num_transitions[:, i]

    # Sub in a no-op for summary op if we don't want to compute summaries.
    summary_op_ = graph.summary_op
    if not do_summary:
        summary_op_ = graph.train_op

    kwargs = {}
    if profiler is not None:
        kwargs["options"] = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        kwargs["run_metadata"] = profiler

    _, summary = sess.run([graph.train_op, summary_op_], feed, **kwargs)
    return summary
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def generate_run(self, run_name, include_graph):
    """Create a run with a text summary, metadata, and optionally a graph."""
    tf.reset_default_graph()
    k1 = tf.constant(math.pi, name='k1')
    k2 = tf.constant(math.e, name='k2')
    result = (k1 ** k2) - k1
    expected = tf.constant(20.0, name='expected')
    error = tf.abs(result - expected, name='error')
    message_prefix_value = 'error ' * 1000
    true_length = len(message_prefix_value)
    assert true_length > self._MESSAGE_PREFIX_LENGTH_LOWER_BOUND, true_length
    message_prefix = tf.constant(message_prefix_value, name='message_prefix')
    error_message = tf.string_join([message_prefix,
                                    tf.as_string(error, name='error_string')],
                                   name='error_message')
    summary_message = tf.summary.text('summary_message', error_message)

    sess = tf.Session()
    writer = tf.summary.FileWriter(os.path.join(self.logdir, run_name))
    if include_graph:
      writer.add_graph(sess.graph)
    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    s = sess.run(summary_message, options=options, run_metadata=run_metadata)
    writer.add_summary(s)
    writer.add_run_metadata(run_metadata, self._METADATA_TAG)
    writer.close()
项目:master-thesis    作者:AndreasMadsen    | 项目源码 | 文件源码
def basic_train(loss_op, update_op,
                profile=0, save_dir='asset/unamed',
                **kwargs):
    profile_state = _ShouldProfile(profile)

    @stf.sg_train_func
    def train_func(sess, arg):
        profile_state.increment()

        if profile_state.should_profile():
            options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
        else:
            options = None
            run_metadata = None

        loss = sess.run([loss_op] + update_op,
                        options=options,
                        run_metadata=run_metadata)[0]

        if profile_state.should_profile():
            tl = tf_timeline.Timeline(run_metadata.step_stats)
            ctf = tl.generate_chrome_trace_format()
            with open(path.join(save_dir, 'timeline.json'), 'w') as fd:
                print(ctf, file=fd)

        return loss

    # run train function
    train_func(save_dir=save_dir, **kwargs)
项目:unrolled-GAN    作者:Zardinality    | 项目源码 | 文件源码
def main(argv=None):
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    with tf.device('/gpu:2'):
        real_data, z, opt_g, opt_d = build_graph()
    summary_op = tf.merge_all_summaries()
    saver = tf.train.Saver()
    npad = ((0, 0), (2, 2), (2, 2))
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())
        summary_writer = tf.train.SummaryWriter(FLAGS.log_dir, sess.graph)
        for i in xrange(FLAGS.max_iter_step):
            train_img = mnist.train.next_batch(FLAGS.batch_size)[0]
            train_img = np.reshape(train_img, (-1, 28, 28))
            train_img = np.pad(train_img, pad_width=npad,
                               mode='constant', constant_values=0)
            train_img = np.expand_dims(train_img, -1)
            batch_z = np.random.normal(0, 1.0, [FLAGS.batch_size, FLAGS.z_dim]) \
                .astype(np.float32)
            feed_dict = {real_data: train_img, z: batch_z}
            if i % 100 == 99:
                run_options = tf.RunOptions(
                    trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                _, merged = sess.run([opt_g, summary_op], feed_dict=feed_dict,
                                     options=run_options, run_metadata=run_metadata)
                _, merged = sess.run([opt_g, summary_op], feed_dict=feed_dict,
                                     options=run_options, run_metadata=run_metadata)
                summary_writer.add_summary(merged, i)
                summary_writer.add_run_metadata(
                    run_metadata, 'generator_metadata{}'.format(i), i)
                _, merged = sess.run([opt_d, summary_op], feed_dict=feed_dict,
                                     options=run_options, run_metadata=run_metadata)
                summary_writer.add_summary(merged, i)
                summary_writer.add_run_metadata(
                    run_metadata, 'discriminator_metadata{}'.format(i), i)
            else:
                sess.run(opt_g, feed_dict=feed_dict)
                sess.run(opt_d, feed_dict=feed_dict)
            if i % 1000 == 999:
                saver.save(sess, os.path.join(
                    FLAGS.ckpt_dir, "model.ckpt"), global_step=i)
项目:tensorflow-talk-debugging    作者:wookayin    | 项目源码 | 文件源码
def train(session):
    batch_size = 200
    session.run(tf.global_variables_initializer())
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)   # (*)
    run_metadata = tf.RunMetadata()

    # Training cycle
    for epoch in range(10):
        epoch_loss = 0.0
        batch_steps = mnist.train.num_examples / batch_size
        for step in range(batch_steps):
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            _, c = session.run(
                [train_op, loss],
                feed_dict={x: batch_x, y: batch_y},
                options=run_options, run_metadata=run_metadata          # (*)
            )
            epoch_loss += c / batch_steps
        print "[%s] Epoch %02d, Loss = %.6f" % (datetime.now(), epoch, epoch_loss)

    # Dump profiling data (*)
    prof_timeline = tf.python.client.timeline.Timeline(run_metadata.step_stats)
    prof_ctf = prof_timeline.generate_chrome_trace_format()
    with open('./prof_ctf.json', 'w') as fp:
        print 'Dumped to prof_ctf.json'
        fp.write(prof_ctf)

    # Test model
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
项目:tag_srl    作者:danfriedman0    | 项目源码 | 文件源码
def run_training_batch(self, session, batch):
        """
        A batch contains input tensors for words, pos, lemmas, preds,
          preds_idx, and labels (in that order)
        Runs the model on the batch (through train_op if train=True)
        Returns the loss
        """
        feed_dict = self.batch_to_feed(batch)
        feed_dict[self.use_dropout_placeholder] = 1.0
        fetches = [self.loss, self.train_op]

        # options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        # run_metadata = tf.RunMetadata()

        loss, _ = session.run(fetches, feed_dict=feed_dict)
        # loss, _ = session.run(fetches,
        #                       feed_dict=feed_dict,
        #                       options=options,
        #                       run_metadata=run_metadata)

        # fetched_timeline = timeline.Timeline(run_metadata.step_stats)
        # chrome_trace = fetched_timeline.generate_chrome_trace_format()
        # with open('timeline.json', 'w') as f:
        #     f.write(chrome_trace)

        return loss
项目:tag_srl    作者:danfriedman0    | 项目源码 | 文件源码
def run_training_batch(self, session, batch):
        """
        A batch contains input tensors for words, pos, lemmas, preds,
          preds_idx, and labels (in that order)
        Runs the model on the batch (through train_op if train=True)
        Returns the loss
        """
        feed_dict = self.batch_to_feed(batch)
        feed_dict[self.use_dropout_placeholder] = 1.0
        fetches = [self.loss, self.train_op]

        # options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        # run_metadata = tf.RunMetadata()

        loss, _ = session.run(fetches, feed_dict=feed_dict)
        # loss, _ = session.run(fetches,
        #                       feed_dict=feed_dict,
        #                       options=options,
        #                       run_metadata=run_metadata)

        # fetched_timeline = timeline.Timeline(run_metadata.step_stats)
        # chrome_trace = fetched_timeline.generate_chrome_trace_format()
        # with open('timeline.json', 'w') as f:
        #     f.write(chrome_trace)

        return loss
项目:ternarynet    作者:czhu95    | 项目源码 | 文件源码
def run_step(self):
        """ Simply run self.train_op"""
        self.sess.run(self.train_op)
        #run_metadata = tf.RunMetadata()
        #self.sess.run([self.train_op],
                #options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
                #run_metadata=run_metadata
                #)
        #from tensorflow.python.client import timeline
        #trace = timeline.Timeline(step_stats=run_metadata.step_stats)
        #trace_file = open('timeline.ctf.json', 'w')
        #trace_file.write(trace.generate_chrome_trace_format())
        #import sys; sys.exit()
项目:alternating-reader-tf    作者:nschuc    | 项目源码 | 文件源码
def trace(config, sess, model, train_data):
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()

    X, Q, Y = random_batch(*train_data, config.batch_size)
    model.batch_fit(X, Q, Y, learning_rate, run_options, run_metadata)
    train_writer.add_run_metadata(run_metadata, 'step%d' % step)

    from tensorflow.python.client import timeline
    tl = timeline.Timeline(run_metadata.step_stats)
    ctf = tl.generate_chrome_trace_format()
    with open('timeline.json', 'w') as f:
        f.write(ctf)
    return
项目:benchmarks    作者:tensorflow    | 项目源码 | 文件源码
def benchmark_one_step(sess,
                       fetches,
                       step,
                       batch_size,
                       step_train_times,
                       trace_filename,
                       image_producer,
                       params,
                       summary_op=None):
  """Advance one step of benchmarking."""
  if trace_filename and step == -1:
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
  else:
    run_options = None
    run_metadata = None
  summary_str = None
  start_time = time.time()
  if summary_op is None:
    results = sess.run(fetches, options=run_options, run_metadata=run_metadata)
  else:
    (results, summary_str) = sess.run(
        [fetches, summary_op], options=run_options, run_metadata=run_metadata)

  if not params.forward_only:
    lossval = results['total_loss']
  else:
    lossval = 0.
  image_producer.notify_image_consumption()
  train_time = time.time() - start_time
  step_train_times.append(train_time)
  if step >= 0 and (step == 0 or (step + 1) % params.display_every == 0):
    log_str = '%i\t%s\t%.3f' % (
        step + 1, get_perf_timing_str(batch_size, step_train_times), lossval)
    if 'top_1_accuracy' in results:
      log_str += '\t%.3f\t%.3f' % (results['top_1_accuracy'],
                                   results['top_5_accuracy'])
    log_fn(log_str)
  if trace_filename and step == -1:
    log_fn('Dumping trace to %s' % trace_filename)
    trace = timeline.Timeline(step_stats=run_metadata.step_stats)
    with gfile.Open(trace_filename, 'w') as trace_file:
      trace_file.write(trace.generate_chrome_trace_format(show_memory=True))
  return summary_str
项目:stuff    作者:yaroslavvb    | 项目源码 | 文件源码
def benchmark_one_step(sess,
                       fetches,
                       step,
                       batch_size,
                       step_train_times,
                       trace_filename,
                       image_producer,
                       params,
                       summary_op=None):
  """Advance one step of benchmarking."""
  if trace_filename is not None and step == -1:
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
  else:
    run_options = None
    run_metadata = None
  summary_str = None
  start_time = time.time()
  if summary_op is None:
    results = sess.run(fetches, options=run_options, run_metadata=run_metadata)
  else:
    (results, summary_str) = sess.run(
        [fetches, summary_op], options=run_options, run_metadata=run_metadata)

  if not params.forward_only:
    lossval = results['total_loss']
  else:
    lossval = 0.
  image_producer.notify_image_consumption()
  train_time = time.time() - start_time
  step_train_times.append(train_time)
  if step >= 0 and (step == 0 or (step + 1) % params.display_every == 0):
    log_str = '%i\t%s\t%.3f' % (
        step + 1, get_perf_timing_str(batch_size, step_train_times), lossval)
    if 'top_1_accuracy' in results:
      log_str += '\t%.3f\t%.3f' % (results['top_1_accuracy'],
                                   results['top_5_accuracy'])
    log_fn(log_str)
  if trace_filename is not None and step == -1:
    log_fn('Dumping trace to %s' % trace_filename)
    trace = timeline.Timeline(step_stats=run_metadata.step_stats)
    with gfile.Open(trace_filename, 'w') as trace_file:
      trace_file.write(trace.generate_chrome_trace_format(show_memory=True))
  return summary_str
项目:ray    作者:ray-project    | 项目源码 | 文件源码
def load_data(self, sess, inputs, full_trace=False):
        """Bulk loads the specified inputs into device memory.

        The shape of the inputs must conform to the shapes of the input
        placeholders this optimizer was constructed with.

        The data is split equally across all the devices. If the data is not
        evenly divisible by the batch size, excess data will be discarded.

        Args:
            sess: TensorFlow session.
            inputs: List of Tensors matching the input placeholders specified
                at construction time of this optimizer.
            full_trace: Whether to profile data loading.

        Returns:
            The number of tuples loaded per device.
        """

        feed_dict = {}
        assert len(self.input_placeholders) == len(inputs)
        for ph, arr in zip(self.input_placeholders, inputs):
            truncated_arr = make_divisible_by(arr, self.batch_size)
            feed_dict[ph] = truncated_arr
            truncated_len = len(truncated_arr)

        if full_trace:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        else:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE)
        run_metadata = tf.RunMetadata()

        sess.run(
            [t.init_op for t in self._towers],
            feed_dict=feed_dict,
            options=run_options,
            run_metadata=run_metadata)
        if full_trace:
            trace = timeline.Timeline(step_stats=run_metadata.step_stats)
            trace_file = open(os.path.join(self.logdir, "timeline-load.json"),
                              "w")
            trace_file.write(trace.generate_chrome_trace_format())

        tuples_per_device = truncated_len / len(self.devices)
        assert tuples_per_device > 0, \
            "Too few tuples per batch, trying increasing the training " \
            "batch size or decreasing the sgd batch size. Tried to split up " \
            "{} rows {}-ways in batches of {} (total across devices).".format(
                len(arr), len(self.devices), self.batch_size)
        assert tuples_per_device % self.per_device_batch_size == 0
        return tuples_per_device
项目:ray    作者:ray-project    | 项目源码 | 文件源码
def optimize(self, sess, batch_index, extra_ops=[], extra_feed_dict={},
                 file_writer=None):
        """Run a single step of SGD.

        Runs a SGD step over a slice of the preloaded batch with size given by
        self.per_device_batch_size and offset given by the batch_index
        argument.

        Updates shared model weights based on the averaged per-device
        gradients.

        Args:
            sess: TensorFlow session.
            batch_index: Offset into the preloaded data. This value must be
                between `0` and `tuples_per_device`. The amount of data to
                process is always fixed to `per_device_batch_size`.
            extra_ops: Extra ops to run with this step (e.g. for metrics).
            extra_feed_dict: Extra args to feed into this session run.
            file_writer: If specified, tf metrics will be written out using
                this.

        Returns:
            The outputs of extra_ops evaluated over the batch.
        """

        if file_writer:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        else:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE)
        run_metadata = tf.RunMetadata()

        feed_dict = {self._batch_index: batch_index}
        feed_dict.update(extra_feed_dict)
        outs = sess.run(
            [self._train_op] + extra_ops,
            feed_dict=feed_dict,
            options=run_options,
            run_metadata=run_metadata)

        if file_writer:
            trace = timeline.Timeline(step_stats=run_metadata.step_stats)
            trace_file = open(os.path.join(self.logdir, "timeline-sgd.json"),
                              "w")
            trace_file.write(trace.generate_chrome_trace_format())
            file_writer.add_run_metadata(
                run_metadata, "sgd_train_{}".format(batch_index))

        return outs[1:]
项目:unrolled-GAN    作者:Zardinality    | 项目源码 | 文件源码
def main():
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    with tf.device('/gpu:1'):    
        g_loss_sum, d_loss_sum, img_sum, opt_g, opt_d, z, real_data = build_graph()
    summary_g = tf.merge_summary([g_loss_sum, img_sum])
    summary_d = tf.merge_summary([d_loss_sum, img_sum])
    saver = tf.train.Saver()
    npad = ((0, 0), (2, 2), (2, 2))
    with tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True)) as sess:
        sess.run(tf.initialize_all_variables())
        summary_writer = tf.train.SummaryWriter(FLAGS.log_dir, sess.graph)
        for i in xrange(FLAGS.max_iter_step):
            train_data = mnist.train.next_batch(FLAGS.batch_size)
            train_img = np.reshape(train_data[0], (-1, 28, 28))
            train_img = np.pad(train_img, pad_width=npad,
                               mode='constant', constant_values=0)
            train_img = np.expand_dims(train_img, -1)
            batch_z = np.random.uniform(-1, 1, [FLAGS.batch_size, FLAGS.z_dim]) \
                .astype(np.float32)
            feed_dict = {real_data[0]: train_img, z: batch_z, real_data[1]:train_data[1]}
            if i % 100 == 99:
                run_options = tf.RunOptions(
                    trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                _, merged = sess.run([opt_g, summary_g], feed_dict=feed_dict,
                                     options=run_options, run_metadata=run_metadata)
                summary_writer.add_summary(merged, i)
                summary_writer.add_run_metadata(
                    run_metadata, 'generator_metadata {}'.format(i), i)
                _, merged = sess.run([opt_g, summary_g], feed_dict=feed_dict,
                                     options=run_options, run_metadata=run_metadata)
                summary_writer.add_summary(merged, i)
                summary_writer.add_run_metadata(
                    run_metadata, 'second_generator_metadata {}'.format(i), i)
                _, merged = sess.run([opt_d, summary_d], feed_dict=feed_dict,
                                     options=run_options, run_metadata=run_metadata)
                summary_writer.add_summary(merged, i)
                summary_writer.add_run_metadata(
                    run_metadata, 'discriminator_metadata {}'.format(i), i)
            else:
                sess.run(opt_g, feed_dict=feed_dict)
                sess.run(opt_g, feed_dict=feed_dict)
                sess.run(opt_d, feed_dict=feed_dict)
            if i % 1000 == 999:
                saver.save(sess, os.path.join(
                    FLAGS.ckpt_dir, "model.ckpt"), global_step=i)
项目:visual-question-answering-tensorflow    作者:lmelvix    | 项目源码 | 文件源码
def train():
    batch_size = 10
    print "Starting ABC-CNN training"
    vqa = dl.load_questions_answers('data')

    # Create subset of data for over-fitting
    sub_vqa = {}
    sub_vqa['training'] = vqa['training'][:10]
    sub_vqa['validation'] = vqa['validation'][:10]
    sub_vqa['answer_vocab'] = vqa['answer_vocab']
    sub_vqa['question_vocab'] = vqa['question_vocab']
    sub_vqa['max_question_length'] = vqa['max_question_length']

    train_size = len(vqa['training'])
    max_itr = (train_size // batch_size) * 10

    with tf.Session() as sess:
        image, ques, ans, optimizer, loss, accuracy = abc.model(sess, batch_size)
        print "Defined ABC model"

        train_loader = util.get_batch(sess, vqa, batch_size, 'training')
        print "Created train dataset generator"

        valid_loader = util.get_batch(sess, vqa, batch_size, 'validation')
        print "Created validation dataset generator"

        writer = abc.write_tensorboard(sess)
        init = tf.global_variables_initializer()        
        merged = tf.summary.merge_all()
        sess.run(init)
        print "Initialized Tensor variables"

        itr = 1

        while itr < max_itr:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()

            _, vgg_batch, ques_batch, answer_batch = train_loader.next()
            _, valid_vgg_batch, valid_ques_batch, valid_answer_batch = valid_loader.next() 
            sess.run(optimizer, feed_dict={image: vgg_batch, ques: ques_batch, ans: answer_batch})
            [train_summary, train_loss, train_accuracy] = sess.run([merged, loss, accuracy], 
                                                    feed_dict={image: vgg_batch, ques: ques_batch, ans: answer_batch},
                                                    options=run_options,
                                                    run_metadata=run_metadata)
            [valid_loss, valid_accuracy] = sess.run([loss, accuracy],
                                                    feed_dict={image: valid_vgg_batch, 
                                                    ques: valid_ques_batch, 
                                                    ans: valid_answer_batch})

            writer.add_run_metadata(run_metadata, 'step%03d' % itr)
            writer.add_summary(train_summary, itr)
            writer.flush()
            print "Iteration:%d\tTraining Loss:%f\tTraining Accuracy:%f\tValidation Loss:%f\tValidation Accuracy:%f"%(
                itr, train_loss, 100.*train_accuracy, valid_loss, 100.*valid_accuracy)
            itr += 1
项目:ActionVLAD    作者:rohitgirdhar    | 项目源码 | 文件源码
def train_step(sess, train_op, global_step, train_step_kwargs):
  """Function that takes a gradient step and specifies whether to stop.
  Args:
    sess: The current session.
    train_op: A dictionary of `Operation` that evaluates the gradients and returns the
      total loss (for first) in case of iter_size > 1.
    global_step: A `Tensor` representing the global training step.
    train_step_kwargs: A dictionary of keyword arguments.
  Returns:
    The total loss and a boolean indicating whether or not to stop training.
  """
  start_time = time.time()
  if FLAGS.iter_size == 1:
    # for debugging specific endpoint values,
    # set the train file to one image and use
    # pdb here
    # import pdb
    # pdb.set_trace()
    if FLAGS.profile_iterations:
      run_options = tf.RunOptions(
          trace_level=tf.RunOptions.FULL_TRACE)
      run_metadata = tf.RunMetadata()
      total_loss, np_global_step = sess.run([train_op, global_step],
          options=run_options,
          run_metadata=run_metadata)
      tl = timeline.Timeline(run_metadata.step_stats)
      ctf = tl.generate_chrome_trace_format()
      with open(os.path.join(FLAGS.train_dir,
                             'timeline_%08d.json' % np_global_step), 'w') as f:
        f.write(ctf)
    else:
      total_loss, np_global_step = sess.run([train_op, global_step])
  else:
    for j in range(FLAGS.iter_size-1):
      sess.run([train_op[j]])
    total_loss, np_global_step = sess.run(
        [train_op[FLAGS.iter_size-1], global_step])
  time_elapsed = time.time() - start_time

  if 'should_log' in train_step_kwargs:
    if sess.run(train_step_kwargs['should_log']):
      logging.info('%s: global step %d: loss = %.4f (%.2f sec)',
                   datetime.now(), np_global_step, total_loss, time_elapsed)

  if 'should_stop' in train_step_kwargs:
    should_stop = sess.run(train_step_kwargs['should_stop'])
  else:
    should_stop = False

  return total_loss, should_stop