Python tensorflow 模块,FixedLengthRecordReader() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.FixedLengthRecordReader()

项目:adventures-in-ml-code    作者:adventuresinML    | 项目源码 | 文件源码
def cifar_shuffle_batch():
    batch_size = 128
    num_threads = 16
    # create a list of all our filenames
    filename_list = [data_path + 'data_batch_{}.bin'.format(i + 1) for i in range(5)]
    # create a filename queue
    # file_q = cifar_filename_queue(filename_list)
    file_q = tf.train.string_input_producer(filename_list)
    # read the data - this contains a FixedLengthRecordReader object which handles the
    # de-queueing of the files.  It returns a processed image and label, with shapes
    # ready for a convolutional neural network
    image, label = read_data(file_q)
    # setup minimum number of examples that can remain in the queue after dequeuing before blocking
    # occurs (i.e. enqueuing is forced) - the higher the number the better the mixing but
    # longer initial load time
    min_after_dequeue = 10000
    # setup the capacity of the queue - this is based on recommendations by TensorFlow to ensure
    # good mixing
    capacity = min_after_dequeue + (num_threads + 1) * batch_size
    # image_batch, label_batch = cifar_shuffle_queue_batch(image, label, batch_size, num_threads)
    image_batch, label_batch = tf.train.shuffle_batch([image, label], batch_size, capacity, min_after_dequeue,
                                                      num_threads=num_threads)
    # now run the training
    cifar_run(image_batch, label_batch)
项目:reslearn    作者:mackcmillion    | 项目源码 | 文件源码
def _image_op_cifar10(filenames, relative_colors):
    label_bytes = 1
    height = 32
    width = 32
    depth = 3
    image_bytes = height * width * depth
    record_bytes = label_bytes + image_bytes

    filename_queue = tf.train.string_input_producer(filenames, num_epochs=1)
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    _, value = reader.read(filename_queue)
    record_bytes = tf.decode_raw(value, tf.uint8)
    depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]), [depth, height, width])
    image = tf.transpose(depth_major, [1, 2, 0])
    image = tf.cast(image, tf.float32)

    if relative_colors:
        image = util.absolute_to_relative_colors(image)
    return image
项目:reslearn    作者:mackcmillion    | 项目源码 | 文件源码
def _read_image(filename_queue):
        # copied from
        # https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/image/cifar10/cifar10_input.py

        # CIFAR-10 specification
        label_bytes = 1
        height = 32
        width = 32
        depth = 3

        image_bytes = height * width * depth
        record_bytes = label_bytes + image_bytes
        reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
        _, value = reader.read(filename_queue)
        record_bytes = tf.decode_raw(value, tf.uint8)

        label = tf.cast(tf.slice(record_bytes, [0], [label_bytes]), tf.int32)
        depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                                 [depth, height, width])
        uint8image = tf.transpose(depth_major, [1, 2, 0])
        image = tf.cast(uint8image, tf.float32)
        return image, tf.squeeze(label)
项目:IllustrationGAN    作者:tdrussell    | 项目源码 | 文件源码
def read_and_decode_cifar(filename_queue):
    label_bytes = 1
    height = 32
    width = 32
    depth = 3
    image_bytes = height * width * depth
    record_bytes = label_bytes + image_bytes
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    _, value = reader.read(filename_queue)

    record_bytes = tf.decode_raw(value, tf.uint8)

    depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                             [depth, height, width])
    image = tf.transpose(depth_major, [1, 2, 0])
    image = tf.cast(image, tf.float32) * (2. / 255) - 1

    return image
项目:ML-Study    作者:corona10    | 项目源码 | 文件源码
def read_raw_images(sess, data_set):
    filename = ['./data/' + data_set + '_data.bin']
    filename_queue = tf.train.string_input_producer(filename)
    print filename
    record_bytes = (FLAGS.height) * (FLAGS.width) * FLAGS.depth + 1
    image_bytes = (FLAGS.height) * (FLAGS.width) * FLAGS.depth
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    key, value = reader.read(filename_queue)
    record_bytes = tf.decode_raw(value, tf.uint8)
    #record_label = tf.decode_raw(value, tf.int32)
    tf.train.start_queue_runners(sess=sess)
    for i in range(0, 10):
        result = sess.run(record_bytes)
        print i, result[0], len(result)
        image = result[1:len(result)]
        print image
项目:TensorFlow-Machine-Learning-Cookbook    作者:PacktPublishing    | 项目源码 | 文件源码
def read_cifar_files(filename_queue, distort_images = True):
    reader = tf.FixedLengthRecordReader(record_bytes=record_length)
    key, record_string = reader.read(filename_queue)
    record_bytes = tf.decode_raw(record_string, tf.uint8)
    image_label = tf.cast(tf.slice(record_bytes, [0], [1]), tf.int32)

    # Extract image
    image_extracted = tf.reshape(tf.slice(record_bytes, [1], [image_vec_length]),
                                 [num_channels, image_height, image_width])

    # Reshape image
    image_uint8image = tf.transpose(image_extracted, [1, 2, 0])
    reshaped_image = tf.cast(image_uint8image, tf.float32)
    # Randomly Crop image
    final_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, crop_width, crop_height)

    if distort_images:
        # Randomly flip the image horizontally, change the brightness and contrast
        final_image = tf.image.random_flip_left_right(final_image)
        final_image = tf.image.random_brightness(final_image,max_delta=63)
        final_image = tf.image.random_contrast(final_image,lower=0.2, upper=1.8)

    # Normalize whitening
    final_image = tf.image.per_image_whitening(final_image)
    return(final_image, image_label)


# Create a CIFAR image pipeline from reader
项目:tensorlight    作者:bsautermeister    | 项目源码 | 文件源码
def _read_record(self, filename_queue):

        class FrameSeqRecord(object):
            pass

        record = FrameSeqRecord()
        record.height = self._data_img_size[0]
        record.width = self._data_img_size[1]
        record.depth = self._data_img_size[2]

        input_seq_length = self.input_shape[0]
        target_seq_length = self.target_shape[0]
        total_seq_length = input_seq_length + target_seq_length

        frame_bytes = record.height * record.width * record.depth
        record_bytes = frame_bytes * (total_seq_length)
        total_file_bytes = frame_bytes * self._serialized_sequence_length

        with tf.name_scope('read_record'):
            reader = tf.FixedLengthRecordReader(total_file_bytes)

            record.key, value = reader.read(filename_queue)
            decoded_record_bytes = tf.decode_raw(value, tf.uint8)

            decoded_record_bytes = tf.reshape(decoded_record_bytes,
                                              [self._serialized_sequence_length, record.height, record.width, record.depth])

            # calculcate tensors [start, 0, 0, 0]
            rnd_start_index = tf.to_int32(tf.random_uniform([1], 0, self._serialized_sequence_length - (total_seq_length), 
                                                            tf.int32))
            seq_start_offset = tf.SparseTensor(indices=[[0]], values=rnd_start_index, dense_shape=[4])
            sequence_start = tf.sparse_tensor_to_dense(seq_start_offset)

            # take a random slice of frames as input
            record.data = tf.slice(decoded_record_bytes, sequence_start,
                                   [total_seq_length, record.height, record.width, record.depth])
            return record
项目:tensorlight    作者:bsautermeister    | 项目源码 | 文件源码
def _read_record(self, filename_queue):

        class FrameSeqRecord(object):
            pass

        record = FrameSeqRecord()
        record.height = self._data_img_size[0]
        record.width = self._data_img_size[1]
        record.depth = self._data_img_size[2]

        input_seq_length = self.input_shape[0]
        target_seq_length = self.target_shape[0]
        total_seq_length = input_seq_length + target_seq_length

        frame_bytes = record.height * record.width * record.depth
        record_bytes = frame_bytes * (total_seq_length)
        total_file_bytes = frame_bytes * self._serialized_sequence_length

        with tf.name_scope('read_record'):
            reader = tf.FixedLengthRecordReader(total_file_bytes)

            record.key, value = reader.read(filename_queue)
            decoded_record_bytes = tf.decode_raw(value, tf.uint8)

            decoded_record_bytes = tf.reshape(decoded_record_bytes,
                                              [self._serialized_sequence_length, record.height, record.width, record.depth])

            # calculcate tensors [start, 0, 0, 0]
            rnd_start_index = tf.to_int32(tf.random_uniform([1], 0, self._serialized_sequence_length - (total_seq_length), 
                                                            tf.int32))
            seq_start_offset = tf.SparseTensor(indices=[[0]], values=rnd_start_index, dense_shape=[4])
            sequence_start = tf.sparse_tensor_to_dense(seq_start_offset)

            # take a random slice of frames as input
            record.data = tf.slice(decoded_record_bytes, sequence_start,
                                   [total_seq_length, record.height, record.width, record.depth])
            return record
项目:examples    作者:guildai    | 项目源码 | 文件源码
def data_inputs(data_dir, data_type, batch_size, runner_threads):

    # Input file reader
    filenames = input_filenames(data_dir, data_type)
    queue = tf.train.string_input_producer(filenames)
    reader = tf.FixedLengthRecordReader(record_bytes=INPUT_RECORD_BYTES)

    # Decode label and image
    _key, record_raw = reader.read(queue)
    record = tf.decode_raw(record_raw, tf.uint8)
    label = tf.cast(tf.slice(record, [0], [INPUT_LABEL_BYTES]), tf.int32)
    image = tf.reshape(
        tf.slice(record, [INPUT_LABEL_BYTES], [INPUT_IMAGE_BYTES]),
        [IMAGE_DEPTH, IMAGE_HEIGHT, IMAGE_WIDTH])

    # Transpose image from stored DHW to HWD
    image_hwd = tf.transpose(image, [1, 2, 0])

    # Finalize image
    image_float = tf.cast(image_hwd, tf.float32)
    if data_type == AUGMENTED_TRAINING_DATA:
        image_final = augmented_standardized_image(image_float)
    else:
        image_final = standardized_image(image_float)

    # Process image and labels using queue runner
    images, labels = tf.train.batch(
        [image_final, label],
        batch_size=batch_size,
        num_threads=runner_threads,
        capacity=10 * batch_size)
    return images, tf.reshape(labels, [batch_size])
项目:nlp    作者:Shmuma    | 项目源码 | 文件源码
def build_input_pipeline(input_file, batch_size):
    input_files = tf.train.string_input_producer([input_file])
    reader = tf.FixedLengthRecordReader(record_bytes=4+4)
    _, raw_val_t = reader.read(input_files)
    int_val_t = tf.decode_raw(raw_val_t, tf.int32)
    center_t, context_t = int_val_t[0], int_val_t[1]

    center_batch_t, context_batch_t = tf.train.batch([center_t, context_t], batch_size, num_threads=4, capacity=1024)
    return center_batch_t, context_batch_t
项目:sparsecnn    作者:fkiaee    | 项目源码 | 文件源码
def ImageProducer(filename_queue): 
    filename = os.path.realpath(os.path.join(os.path.dirname(__file__), 'cifar10/zca.pkl'))
    file = open(filename, 'rb')
    data = pickle.load(file)
    file.close() 
    Wzca= tf.constant(data['zca'],tf.float32)
    label_bytes = 1; 
    height = 32; width = 32; depth = 3
    image_bytes = height * width * depth
    record_bytes = label_bytes + image_bytes
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    key, value = reader.read(filename_queue)
    record_bytes = tf.decode_raw(value, tf.uint8)
    label_byte_slices = tf.slice(record_bytes, [0], [label_bytes]);
    label = tf.cast(label_byte_slices, tf.int32)
    image = tf.slice(record_bytes, [label_bytes], [image_bytes])#tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),[depth,height,width])
    image = tf.cast(image, tf.float32)   
    image = tf.reshape(image,[1,image_bytes])  
    image = tf.sub(image,tf.reduce_mean(image))
    scale = tf.constant(55.); thresh = tf.constant(1.)
    std_val  = tf.div(tf.sqrt(tf.reduce_sum(tf.square(image))),scale); 
    f4 = lambda: std_val
    f5 = lambda: thresh
    normalizer = tf.cond(tf.less(std_val,1e-8),f5,f4)
    image = tf.div(image,normalizer)
    image = tf.sub(image,tf.reduce_mean(image))
    img_RGB = tf.matmul(image,Wzca)
    depth_major = tf.reshape(img_RGB,[depth,height,width])
    image = tf.transpose(depth_major, [1, 2, 0])  
    return image, label
项目:BinaryNet.tf    作者:itayhubara    | 项目源码 | 文件源码
def __read_cifar(filenames, shuffle=True, cifar100=False):
  """Reads and parses examples from CIFAR data files.
  """
  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  filename_queue = tf.train.string_input_producer(filenames, shuffle=shuffle,num_epochs=None)

  label_bytes = 1  # 2 for CIFAR-100
  if cifar100:
      label_bytes = 2
  height = 32
  width = 32
  depth = 3
  image_bytes = height * width * depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [depth, height, width])
  # Convert from [depth, height, width] to [height, width, depth].
  image = tf.transpose(depth_major, [1, 2, 0])

  return tf.cast(image, tf.float32), label
项目:ML-Study    作者:corona10    | 项目源码 | 文件源码
def read_raw_images(data_set):
    dirs = './data/'+data_set+'/'
    filename = list_binary_files(dirs)
    print filename
    filename_queue = tf.train.string_input_producer(filename)

    if data_set is 'train':
        image_bytes = FLAGS.height * FLAGS.width * FLAGS.depth
        record_bytes = image_bytes + 1
        reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
        key, value = reader.read(filename_queue)
        record_bytes = tf.decode_raw(value, tf.uint8)
        label = tf.cast(tf.slice(record_bytes, [0], [1]), tf.int32)
        depth_major = tf.reshape(tf.slice(record_bytes, [1], [image_bytes]),[FLAGS.depth, FLAGS.height, FLAGS.width])
        uint8image = tf.transpose(depth_major, [1, 2, 0])
        return label, uint8image
    elif data_set is 'test':
        image_bytes = FLAGS.height * FLAGS.width * FLAGS.depth
        record_bytes = image_bytes + 1
        reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
        key, value = reader.read(filename_queue)
        record_bytes = tf.decode_raw(value, tf.uint8)
        depth_major = tf.reshape(tf.slice(record_bytes, [0], [image_bytes]),
        [FLAGS.depth, FLAGS.height, FLAGS.width])
        uint8image = tf.transpose(depth_major, [1, 2, 0])
        return uint8image
项目:ml    作者:hohoins    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:ml    作者:hohoins    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:vae-npvc    作者:JeremyCCHsu    | 项目源码 | 文件源码
def read(
    file_pattern,
    batch_size,
    record_bytes=RECORD_BYTES,
    capacity=256,
    min_after_dequeue=128,
    num_threads=8,
    format='NCHW',
    normalizer=None,
    ):
    ''' 
    Read only `sp` and `speaker` 
    Return:
        `feature`: [b, c]
        `speaker`: [b,]
    '''
    with tf.name_scope('InputSpectralFrame'):
        files = tf.gfile.Glob(file_pattern)
        filename_queue = tf.train.string_input_producer(files)


        reader = tf.FixedLengthRecordReader(record_bytes)
        _, value = reader.read(filename_queue)
        value = tf.decode_raw(value, tf.float32)

        value = tf.reshape(value, [FEAT_DIM,])
        feature = value[:SP_DIM]   # NCHW format

        if normalizer is not None:
            feature = normalizer.forward_process(feature)

        if format == 'NCHW':
            feature = tf.reshape(feature, [1, SP_DIM, 1])
        elif format == 'NHWC':
            feature = tf.reshape(feature, [SP_DIM, 1, 1])
        else:
            pass
        speaker = tf.cast(value[-1], tf.int64)
        return tf.train.shuffle_batch(
            [feature, speaker],
            batch_size,
            capacity=capacity,
            min_after_dequeue=min_after_dequeue,
            num_threads=num_threads,
            # enqueue_many=True,
        )
项目:3D_CNN_jonas    作者:2015ZxEE    | 项目源码 | 文件源码
def read_data(file_queue):
    """
    Data is saved in binary files.
    Each row has:
        1st byte      -> label
        2nd-last byte -> 3D Volume [height, width, depth, channels]
    Args:
        file_queue      -> a queue of file names saved as strings
    Rtns:
        An object with:
            height      -> volume height
            width       -> volume width
            depth       -> volume depth
            nChan       -> number of channels
            key         -> scalar tensor with file name and record number
            label       -> 1D int32 tensor with the associated label
            img3_uint8  -> 4D uint8 tensor with image data
    """

    class record_data(object):
        pass
    img3_obj = record_data()

    # Dimensions of data
    label_bytes     = 1
    img3_obj.height = CFG['height']
    img3_obj.width  = CFG['width']
    img3_obj.depth  = CFG['depth']
    img3_obj.nChan  = CFG['nChan']

    # Size in memory
    img3_bytes   = img3_obj.height*img3_obj.width*img3_obj.depth*img3_obj.nChan
    record_bytes = label_bytes + img3_bytes

    # Read a record
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    img3_obj.key,value = reader.read(file_queue)

    # Convert from a string to a vector of uint8 that is record_bytes long
    record_bytes = tf.decode_raw(value, tf.uint8)

    # First byte represent the label, which we convert from uint8 -> int32
    img3_obj.label = tf.cast(tf.slice(record_bytes,[0],[label_bytes]),tf.int32)

    # Remaining bytes after the label represent the image, which we reshape from
    # [depth * height * width] to [depth,height, width]
    depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes],
                [img3_bytes]),[img3_obj.depth,img3_obj.height,img3_obj.width,
                                                                img3_obj.nChan])
    img3_obj.img3_uint8 = tf.transpose(depth_major,[2,1,0,3])
    return img3_obj
项目:facial-emotion-detection-dl    作者:dllatas    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.
  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.
  Args:
    filename_queue: A queue of strings with the filenames to read from.
  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 480
  result.width = 640
  result.depth = 1
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:facial-emotion-detection-dl    作者:dllatas    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.
  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.
  Args:
    filename_queue: A queue of strings with the filenames to read from.
  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """
  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()
  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = IMAGE_SIZE
  result.width = IMAGE_SIZE
  result.depth = 1
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes
  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)
  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)
  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)
  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])
  return result
项目:facial-emotion-detection-dl    作者:dllatas    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.
  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.
  Args:
    filename_queue: A queue of strings with the filenames to read from.
  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 480
  result.width = 640
  result.depth = 1
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:deep_learning_study    作者:jowettcz    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:deep_learning_study    作者:jowettcz    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:probabilistic_line_search    作者:ProbabilisticNumerics    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.
  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.
  Args:
    filename_queue: A queue of strings with the filenames to read from.
  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:dlbench    作者:hclhkbu    | 项目源码 | 文件源码
def read_cifar10(filename_queue, data_format):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  # Using CHW (NCHW) as the default so no need to transpose
  if data_format == 'NHWC':
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])
  else:
    result.uint8image = depth_major
  return result
项目:dlbench    作者:hclhkbu    | 项目源码 | 文件源码
def read_cifar10(filename_queue, data_format):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])

  # Convert from [depth, height, width] (NCHW) to [height, width, depth] (NHWC).
  if data_format == 'NHWC':
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])
  else:
    result.uint8image = depth_major
  return result
项目:dlbench    作者:hclhkbu    | 项目源码 | 文件源码
def read_cifar10(filenames, use_queue=False):

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  if not reshape_to_one:
    depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                             [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])
  else:
    #result.uint8image = tf.cast(tf.slice(record_bytes, [label_bytes], [image_bytes]), [result.depth*result.height*result*result.width])
    result.uint8image = tf.slice(record_bytes, [label_bytes], [image_bytes])

  return result
项目:MachineLearningTutorial    作者:SpikeKing    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:keras_experiments    作者:avolkov1    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:adventures-in-ml-code    作者:adventuresinML    | 项目源码 | 文件源码
def read_data(file_q):
    # Code from https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_input.py
    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    # Dimensions of the images in the CIFAR-10 dataset.
    # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
    # input format.
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    # Every record consists of a label followed by the image, with a
    # fixed number of bytes for each.
    record_bytes = label_bytes + image_bytes

    # Read a record, getting filenames from the filename_queue.  No
    # header or footer in the CIFAR-10 format, so we leave header_bytes
    # and footer_bytes at their default of 0.
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(file_q)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    record_bytes = tf.decode_raw(value, tf.uint8)

    # The first bytes represent the label, which we convert from uint8->int32.
    result.label = tf.cast(
        tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

    # The remaining bytes after the label represent the image, which we reshape
    # from [depth * height * width] to [depth, height, width].
    depth_major = tf.reshape(
        tf.strided_slice(record_bytes, [label_bytes],
                         [label_bytes + image_bytes]),
        [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    reshaped_image = tf.cast(result.uint8image, tf.float32)

    height = 24
    width = 24

    # Image processing for evaluation.
    # Crop the central [height, width] of the image.
    resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                           height, width)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_standardization(resized_image)

    # Set the shapes of tensors.
    float_image.set_shape([height, width, 3])
    result.label.set_shape([1])

    return float_image, result.label
项目:visual-interaction-networks_tensorflow    作者:jaesik817    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:SLAM    作者:sanjeevkumar42    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:DeepLearningAndTensorflow    作者:azheng333    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:TF-Examples    作者:CharlesShang    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
    """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    # Dimensions of the images in the CIFAR-10 dataset.
    # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
    # input format.
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    # Every record consists of a label followed by the image, with a
    # fixed number of bytes for each.
    record_bytes = label_bytes + image_bytes

    # Read a record, getting filenames from the filename_queue.  No
    # header or footer in the CIFAR-10 format, so we leave header_bytes
    # and footer_bytes at their default of 0.
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(filename_queue)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    record_bytes = tf.decode_raw(value, tf.uint8)

    # The first bytes represent the label, which we convert from uint8->int32.
    result.label = tf.cast(
        tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

    # The remaining bytes after the label represent the image, which we reshape
    # from [depth * height * width] to [depth, height, width].
    depth_major = tf.reshape(
        tf.slice(record_bytes, [label_bytes], [image_bytes]),
        [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    return result
项目:pathnet    作者:jaesik817    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:TF-Net    作者:Jorba123    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.slice(record_bytes, [label_bytes],
                       [image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:pixel-rnn    作者:pby5    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:emotion-recognition-1    作者:lijian8    | 项目源码 | 文件源码
def read_fer2013(filename_queue):
  """Reads and parses examples from FER2013 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (48)
      width: number of columns in the result (348)
      depth: number of color channels in the result (1)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..7.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class FER2013Record(object):
    pass
  result = FER2013Record()

  label_bytes = 1
  result.height = 48
  result.width = 48
  result.depth = 1 # 3 for RGB
  image_bytes = result.height * result.width * result.depth

  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the FER2013 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:tf-variational-dropout    作者:BayesWatch    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:tensorsandbox    作者:kaizouman    | 项目源码 | 文件源码
def get_raw_input_data(test_data, data_dir):
    """Raw CIFAR10 input data ops using the Reader ops.

    Args:
        test_data: bool, indicating if one should use the test or train set.
        data_dir: Path to the CIFAR-10 data directory.

    Returns:
        image: an op producing a 32x32x3 float32 image
        label: an op producing an int32 label
    """

    # Verify first that we have a valid data directory
    if not os.path.exists(data_dir):
        raise ValueError("Data directory %s doesn't exist" % data_dir)

    # Construct a list of input file names
    batches_dir = os.path.join(data_dir, 'cifar-10-batches-bin')
    if test_data:
        filenames = [os.path.join(batches_dir, 'test_batch.bin')]
    else:
        filenames = [os.path.join(batches_dir, 'data_batch_%d.bin' %ii)
                                        for ii in xrange(1, 6)]

    # Make sure all input files actually exist
    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    # Create a string input producer to cycle over file names
    filenames_queue = tf.train.string_input_producer(filenames)

    # CIFAR data samples are stored as contiguous labels and images
    label_size = 1
    image_size = IMAGE_DEPTH * IMAGE_HEIGHT * IMAGE_WIDTH

    # Instantiate a fixed length file reader
    reader = tf.FixedLengthRecordReader(label_size + image_size)

    # Read from files
    key, value = reader.read(filenames_queue)
    record_bytes = tf.decode_raw(value, tf.uint8)

    # Extract label and cast to int32
    label = tf.cast(tf.slice(record_bytes, [0], [label_size]), tf.int32)

    # Extract image and cast to float32
    image = tf.cast(tf.slice(record_bytes,
                             [label_size],
                             [image_size]),
                    tf.float32)

    # Images are stored as D x H x W vectors, but we want H x W x D
    # So we need to convert to a matrix
    image = tf.reshape(image, (IMAGE_DEPTH, IMAGE_HEIGHT, IMAGE_WIDTH))
    # Transpose dimensions
    image = tf.transpose(image, (1, 2, 0))

    return (image, label)
项目:Tamp    作者:ColumbiaDVMM    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:Tamp    作者:ColumbiaDVMM    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:Tamp    作者:ColumbiaDVMM    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:Tamp    作者:ColumbiaDVMM    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:Tamp    作者:ColumbiaDVMM    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:tensor_flow    作者:eecrazy    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:pixel-rnn-tensorflow    作者:carpedm20    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:Applied-Machine-Learning    作者:hkiang01    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:TensorFlow    作者:DiamonJoy    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  # ?????????????c??????????
  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # ????Reader????????????????
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  # ???filename_queue????(key, value)??key?value????????tensor
  # ??????????????????????dequeue
  result.key, value = reader.read(filename_queue)

  # ??????????????????????????????,???????????
  # ?[0, 255]??????out_type??uint8??
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:Bayesian-FlowNet    作者:Johswald    | 项目源码 | 文件源码
def tensorflow_reader(list_0, list_1, flow_list, shuffle_all, batchs):
    """Average endpoint error between prediction and groundtruth

    Keyword arguments:
    list_0 -- source list of first of img pair
    list_1 -- source list of second of img pair
    flow_list -- source list of optical flow between first and second img
    shuffle_all -- boolean if list should be shuffled
    batchs -- batchsize
    """

    assert len(list_0) == len(list_1) == len(
        flow_list) != 0, ('Input Lengths not correct')

    print("Number of inputs: " + str(len(list_0)))
    if shuffle_all == True:
        p = np.random.permutation(len(list_0))
    else:
        p = np.arange(len(list_0))
    list_0 = [list_0[i] for i in p]
    list_1 = [list_1[i] for i in p]
    flow_list = [flow_list[i] for i in p]
    input_queue = tf.train.slice_input_producer(
        [list_0, list_1],
        shuffle=False)  # shuffled before
    # image reader
    content_0 = tf.read_file(input_queue[0])
    content_1 = tf.read_file(input_queue[1])
    imgs_0 = tf.image.decode_image(content_0, channels=3)
    imgs_1 = tf.image.decode_image(content_1, channels=3)
    # convert to [0, 1] images
    imgs_0 = tf.image.convert_image_dtype(imgs_0, dtype=tf.float32)
    imgs_1 = tf.image.convert_image_dtype(imgs_1, dtype=tf.float32)
    # flow reader
    filename_queue = tf.train.string_input_producer(flow_list, shuffle=False)
    record_bytes = FLAGS.record_bytes  # 1572876
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    key, value = reader.read(filename_queue)
    record_bytes = tf.decode_raw(value, tf.float32)

    magic = tf.slice(record_bytes, [0], [1])  # .flo number 202021.25
    size = tf.slice(record_bytes, [1], [2])  # size of flow / image
    flows = tf.slice(record_bytes, [3], [np.prod(FLAGS.flow_shape)])
    flows = tf.reshape(flows, FLAGS.flow_shape)

    # set shape
    imgs_0.set_shape(FLAGS.img_shape)
    imgs_1.set_shape(FLAGS.img_shape)
    flows.set_shape(FLAGS.flow_shape)

    return tf.train.batch([imgs_0, imgs_1, flows],
                          batch_size=batchs
                          #,num_threads=1
                          )
项目:TensorFlowOnSpark    作者:yahoo    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result