Python tensorflow 模块,load_op_library() 实例源码

我们从Python开源项目中,提取了以下12个代码示例,用于说明如何使用tensorflow.load_op_library()

项目:BDD_Driving_Model    作者:gy20073    | 项目源码 | 文件源码
def decode_jpeg(self, image_buffer, scope=None):
        if FLAGS.fast_jpeg_decode == "pyfunc":
            print("using ctypes jpeg decode...")
            lib_jpeg = ctypes.cdll.LoadLibrary('./data_providers/decode_jpeg_memory/decode_memory.so')
            global ctypes_jpeg
            ctypes_jpeg = lib_jpeg.decode_jpeg_memory_turbo
            return self.decode_jpeg_python(image_buffer, scope)
        elif FLAGS.fast_jpeg_decode=="tf":
            print("using tensorflow binary libjpeg turbo")
            decode_jpeg_batch = tf.load_op_library(
                './data_providers/decode_jpeg_memory/decode_jpeg_batch.so').decode_jpeg_batch
            assert( FLAGS.decode_downsample_factor == 1 )
            ans = decode_jpeg_batch(image_buffer, FLAGS.IM_HEIGHT, FLAGS.IM_WIDTH)
            ans.set_shape([FLAGS.FRAMES_IN_SEG // FLAGS.temporal_downsample_factor,
                           FLAGS.IM_HEIGHT, FLAGS.IM_WIDTH, 3])
            return ans
        else:
            return self.decode_jpeg_original(image_buffer, scope)
项目:EnglishSpeechUpsampler    作者:jhetherly    | 项目源码 | 文件源码
def testShuffle(self):
        shuffle_module = tf.load_op_library('shuffle_op.so')
        shuffle = shuffle_module.shuffle

        input_tensor = np.arange(12).reshape((3, 4))
        desired_shape = np.array([6, -1])
        output_tensor = input_tensor.reshape((6, 2))
        with self.test_session():
            result = shuffle(input_tensor, desired_shape)
            self.assertAllEqual(result.eval(), output_tensor)

        input_tensor = np.arange(12).reshape((3, 4))
        desired_shape = np.array([5, -1])
        output_tensor = input_tensor.reshape((6, 2))[:-1]
        with self.test_session():
            result = shuffle(input_tensor, desired_shape)
            self.assertAllEqual(result.eval(), output_tensor)
项目:seglink    作者:bgshih    | 项目源码 | 文件源码
def load_oplib(lib_name):
  """
  Load TensorFlow operator library.
  """
  # use absolute path so that ops.py can be called from other directory
  lib_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'lib{0}.so'.format(lib_name))
  # duplicate library with a random new name so that
  # a running program will not be interrupted when the original library is updated
  lib_copy_path = '/tmp/lib{0}_{1}.so'.format(str(uuid.uuid4())[:8], LIB_NAME)
  shutil.copyfile(lib_path, lib_copy_path)
  oplib = tf.load_op_library(lib_copy_path)
  return oplib
项目:rec-attend-public    作者:renmengye    | 项目源码 | 文件源码
def f_segm_match(iou, s_gt):
  """Matching between segmentation output and groundtruth.
  Args:
    y_out: [B, T, H, W], output segmentations
    y_gt: [B, T, H, W], groundtruth segmentations
    s_gt: [B, T], groudtruth score sequence
  """
  global hungarian_module
  if hungarian_module is None:
    mod_name = './hungarian.so'
    hungarian_module = tf.load_op_library(mod_name)
    log.info('Loaded library "{}"'.format(mod_name))

  # Mask X, [B, M] => [B, 1, M]
  mask_x = tf.expand_dims(s_gt, dim=1)
  # Mask Y, [B, M] => [B, N, 1]
  mask_y = tf.expand_dims(s_gt, dim=2)
  iou_mask = iou * mask_x * mask_y

  # Keep certain precision so that we can get optimal matching within
  # reasonable time.
  eps = 1e-5
  precision = 1e6
  iou_mask = tf.round(iou_mask * precision) / precision
  match_eps = hungarian_module.hungarian(iou_mask + eps)[0]

  # [1, N, 1, 1]
  s_gt_shape = tf.shape(s_gt)
  num_segm_out = s_gt_shape[1]
  num_segm_out_mul = tf.pack([1, num_segm_out, 1])
  # Mask the graph algorithm output.
  match = match_eps * mask_x * mask_y

  return match
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def Load():
  """Load the TopN ops library and return the loaded module."""
  with _ops_lock:
    global _topn_ops
    if not _topn_ops:
      ops_path = tf.resource_loader.get_path_to_datafile(TOPN_OPS_FILE)
      tf.logging.info('data path: %s', ops_path)
      _topn_ops = tf.load_op_library(ops_path)

      assert _topn_ops, 'Could not load topn_ops.so'
  return _topn_ops
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def Load(library_base_dir=''):
  """Load the quantized ops library and return the loaded module."""
  with _kernels_lock:
    global _quantized_kernels
    if not _quantized_kernels:
      data_files_path = os.path.join(library_base_dir,
                                     tf.resource_loader.get_data_files_path())
      tf.logging.info('data path: %s', data_files_path)
      _quantized_kernels = tf.load_op_library(os.path.join(
          data_files_path, QUANTIZED_KERNELS_FILE))

      assert _quantized_kernels, 'Could not load _quantized_kernels.so'
  return _quantized_kernels
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def Load(library_base_dir=''):
  """Load the quantized ops library and return the loaded module."""
  with _ops_lock:
    global _quantized_ops
    if not _quantized_ops:
      data_files_path = os.path.join(library_base_dir,
                                     tf.resource_loader.get_data_files_path())
      tf.logging.info('q:data path: %s', data_files_path)
      _quantized_ops = tf.load_op_library(os.path.join(
          data_files_path, QUANTIZED_OPS_FILE))

      assert _quantized_ops, 'Could not load quantized_ops.so'
  return _quantized_ops
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def Load():
  """Load the TopN ops library and return the loaded module."""
  with _ops_lock:
    global _topn_ops
    if not _topn_ops:
      ops_path = tf.resource_loader.get_path_to_datafile(TOPN_OPS_FILE)
      tf.logging.info('data path: %s', ops_path)
      _topn_ops = tf.load_op_library(ops_path)

      assert _topn_ops, 'Could not load topn_ops.so'
  return _topn_ops
项目:tensorflow-kr    作者:tensorflowkorea    | 项目源码 | 文件源码
def testLoadTwice(self):
    zero_out_loaded_again = tf.load_op_library(os.path.join(
        tf.resource_loader.get_data_files_path(), 'zero_out_op_kernel_1.so'))
    self.assertEqual(zero_out_loaded_again, zero_out_op_1._zero_out_module)
项目:Relation_Extraction    作者:wadhwasahil    | 项目源码 | 文件源码
def is_word(word):
    for char in word:
        if char.isalpha() or char.isdigit():
            return True
    return False


# def word2id(word):
#     word = 'b\'' + word + '\''
#     with open("data/vocab.txt") as f:
#         for i, line in enumerate(f):
#             if line.split()[0] == word:
#                 return i
#     return -1


# def get_word_vector():
#     tf.load_op_library(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'word2vec_ops.so'))
#     metafile = str(tf.train.get_checkpoint_state("data").model_checkpoint_path) + ".meta"
#     sess = tf.Session()
#     new_saver = tf.train.import_meta_graph(metafile)
#     new_saver.restore(sess, tf.train.latest_checkpoint("data"))
#     all_vars = tf.trainable_variables()
#     init_op = tf.global_variables_initializer()
#     sess.run(init_op)
#     yield sess.run(all_vars[3])
项目:Buffe    作者:bentzinir    | 项目源码 | 文件源码
def __init__(self, run_dir):

        self.name = 'linemove_2D'

        game_params = {
            'L': 2,
            'dt': 0.15,
            'v_0': 0.,
            'v_max': 0.5,
        }

        self._connect(game_params)

        self._train_params()

        self.run_dir = run_dir

        if self.collect_data:
            self.record_expert()
            sys.exit(0)

        self._init_display()

        # subprocess.Popen(self.run_dir + "./simulator")

        # self.pipe_module = tf.load_op_library(self.run_dir + 'pipe.so')

        plt.ion()
        plt.show()
项目:Buffe    作者:bentzinir    | 项目源码 | 文件源码
def __init__(self, run_dir):

        r = 10.
        game_params = {
            'r': r,
            'dt': 1./9,
            'host_speed': 10/3.6,
            'target_speed': 5.,
            'num_of_targets': 5,
        }

        self._connect(game_params)

        self._train_params()

        self.fig = plt.figure()
        self.ax = plt.subplot2grid((2, 2), (0, 0), colspan=2, rowspan=2)

        self.run_dir = run_dir

        subprocess.Popen(self.run_dir + "./simulator")

        self.pipe_module = tf.load_op_library(self.run_dir + 'pipe.so')

        plt.ion()
        plt.show()