Python tensorflow 模块,sin() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.sin()

项目:convolutional-pose-machines-tensorflow    作者:timctho    | 项目源码 | 文件源码
def rotate_points(orig_points, angle, w, h):
    """Return rotated points

    Args:
        orig_points: 'Tensor' with shape [N,2], each entry is point (x,y)
        angle: rotate radians

    Returns:
        'Tensor' with shape [N,2], with rotated points
    """

    # rotation
    rotate_mat = tf.stack([[tf.cos(angle) / w, tf.sin(angle) / h],
                           [-tf.sin(angle) / w, tf.cos(angle) / h]])

    # shift coord
    orig_points = tf.subtract(orig_points, 0.5)

    orig_points = tf.stack([orig_points[:, 0] * w,
                            orig_points[:, 1] * h], axis=1)
    print(orig_points)
    rotated_points = tf.matmul(orig_points, rotate_mat) + 0.5

    return rotated_points
项目:tf-crnn    作者:solivr    | 项目源码 | 文件源码
def random_rotation(img: tf.Tensor, max_rotation: float=0.1, crop: bool=True) -> tf.Tensor:  # from SeguinBe
    with tf.name_scope('RandomRotation'):
        rotation = tf.random_uniform([], -max_rotation, max_rotation)
        rotated_image = tf.contrib.image.rotate(img, rotation, interpolation='BILINEAR')
        if crop:
            rotation = tf.abs(rotation)
            original_shape = tf.shape(rotated_image)[:2]
            h, w = original_shape[0], original_shape[1]
            # see https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders for formulae
            old_l, old_s = tf.cond(h > w, lambda: [h, w], lambda: [w, h])
            old_l, old_s = tf.cast(old_l, tf.float32), tf.cast(old_s, tf.float32)
            new_l = (old_l * tf.cos(rotation) - old_s * tf.sin(rotation)) / tf.cos(2*rotation)
            new_s = (old_s - tf.sin(rotation) * new_l) / tf.cos(rotation)
            new_h, new_w = tf.cond(h > w, lambda: [new_l, new_s], lambda: [new_s, new_l])
            new_h, new_w = tf.cast(new_h, tf.int32), tf.cast(new_w, tf.int32)
            bb_begin = tf.cast(tf.ceil((h-new_h)/2), tf.int32), tf.cast(tf.ceil((w-new_w)/2), tf.int32)
            rotated_image_crop = rotated_image[bb_begin[0]:h - bb_begin[0], bb_begin[1]:w - bb_begin[1], :]

            # If crop removes the entire image, keep the original image
            rotated_image = tf.cond(tf.equal(tf.size(rotated_image_crop), 0),
                                    true_fn=lambda: img,
                                    false_fn=lambda: rotated_image_crop)

        return rotated_image
项目:DocumentSegmentation    作者:SeguinBe    | 项目源码 | 文件源码
def rotate_crop(img, rotation, crop=True, interpolation='NEAREST'):
    with tf.name_scope('RotateCrop'):
        rotated_image = tf_rotate(img, rotation, interpolation)
        if crop:
            rotation = tf.abs(rotation)
            original_shape = tf.shape(rotated_image)[:2]
            h, w = original_shape[0], original_shape[1]
            # see https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders for formulae
            old_l, old_s = tf.cond(h > w, lambda: [h, w], lambda: [w, h])
            old_l, old_s = tf.cast(old_l, tf.float32), tf.cast(old_s, tf.float32)
            new_l = (old_l * tf.cos(rotation) - old_s * tf.sin(rotation)) / tf.cos(2 * rotation)
            new_s = (old_s - tf.sin(rotation) * new_l) / tf.cos(rotation)
            new_h, new_w = tf.cond(h > w, lambda: [new_l, new_s], lambda: [new_s, new_l])
            new_h, new_w = tf.cast(new_h, tf.int32), tf.cast(new_w, tf.int32)
            bb_begin = tf.cast(tf.ceil((h - new_h) / 2), tf.int32), tf.cast(tf.ceil((w - new_w) / 2), tf.int32)
            rotated_image_crop = rotated_image[bb_begin[0]:h - bb_begin[0], bb_begin[1]:w - bb_begin[1], :]

            # If crop removes the entire image, keep the original image
            rotated_image = tf.cond(tf.equal(tf.size(rotated_image_crop), 0),
                                    true_fn=lambda: img,
                                    false_fn=lambda: rotated_image_crop)
        return rotated_image
项目:TensorflowFramework    作者:vahidk    | 项目源码 | 文件源码
def cyclic_decay(learning_rate, 
                 min_learning_rate=1e-4,
                 cycle_length=1000,
                 decay_steps=20000,
                 decay_rate=0.5):
  """Cyclic learning rate."""
  step = tf.to_float(tf.train.get_or_create_global_step())

  decay = decay_rate ** (step // decay_steps)
  min_learning_rate = min_learning_rate * decay
  max_learning_rate = learning_rate * decay

  cycle = tf.sin(step * 2 * 3.141592 / cycle_length)
  learning_rate = ((max_learning_rate - min_learning_rate) * (cycle + 1) * 0.5 + 
                    min_learning_rate)

  return learning_rate
项目:nengo_dl    作者:nengo    | 项目源码 | 文件源码
def test_node(Simulator):
    minibatch_size = 3
    with nengo.Network() as net:
        node0 = TensorNode(lambda t: tf.tile(tf.reshape(t, (1, -1)),
                                             (minibatch_size, 1)))
        node1 = TensorNode(lambda t, x: tf.sin(x), size_in=1)
        nengo.Connection(node0, node1, synapse=None)

        p0 = nengo.Probe(node0)
        p1 = nengo.Probe(node1)

    with Simulator(net, minibatch_size=minibatch_size) as sim:
        sim.run_steps(10)

    assert np.allclose(sim.data[p0], sim.trange()[None, :, None])
    assert np.allclose(sim.data[p1], np.sin(sim.trange()[None, :, None]))
项目:quantum-optimal-control    作者:SchusterLab    | 项目源码 | 文件源码
def init_tf_ops_weight(self):

        #tf weights of operators

        self.H0_weight = tf.Variable(tf.ones([self.sys_para.steps]), trainable=False) #Just a vector of ones needed for the kernel
        self.weights_unpacked=[self.H0_weight] #will collect all weights here
        self.ops_weight_base = tf.Variable(tf.constant(self.sys_para.ops_weight_base, dtype = tf.float32), dtype=tf.float32,name ="weights_base")

        self.ops_weight = tf.sin(self.ops_weight_base,name="weights")
        for ii in range (self.sys_para.ops_len):
            self.weights_unpacked.append(self.sys_para.ops_max_amp[ii]*self.ops_weight[ii,:])

        #print len(self.sys_para.ops_max_amp)
        self.H_weights = tf.stack(self.weights_unpacked,name="packed_weights")



        print "Operators weight initialized."
项目:hand3d    作者:lmb-freiburg    | 项目源码 | 文件源码
def _get_rot_mat(self, ux_b, uy_b, uz_b):
        """ Returns a rotation matrix from axis and (encoded) angle."""
        with tf.name_scope('get_rot_mat'):
            u_norm = tf.sqrt(tf.square(ux_b) + tf.square(uy_b) + tf.square(uz_b) + 1e-8)
            theta = u_norm

            # some tmp vars
            st_b = tf.sin(theta)
            ct_b = tf.cos(theta)
            one_ct_b = 1.0 - tf.cos(theta)

            st = st_b[:, 0]
            ct = ct_b[:, 0]
            one_ct = one_ct_b[:, 0]
            norm_fac = 1.0 / u_norm[:, 0]
            ux = ux_b[:, 0] * norm_fac
            uy = uy_b[:, 0] * norm_fac
            uz = uz_b[:, 0] * norm_fac

            trafo_matrix = self._stitch_mat_from_vecs([ct+ux*ux*one_ct, ux*uy*one_ct-uz*st, ux*uz*one_ct+uy*st,
                                                       uy*ux*one_ct+uz*st, ct+uy*uy*one_ct, uy*uz*one_ct-ux*st,
                                                       uz*ux*one_ct-uy*st, uz*uy*one_ct+ux*st, ct+uz*uz*one_ct])

            return trafo_matrix
项目:hand3d    作者:lmb-freiburg    | 项目源码 | 文件源码
def _get_rot_mat(self, ux_b, uy_b, uz_b):
        """ Returns a rotation matrix from axis and (encoded) angle."""
        with tf.name_scope('get_rot_mat'):
            u_norm = tf.sqrt(tf.square(ux_b) + tf.square(uy_b) + tf.square(uz_b) + 1e-8)
            theta = u_norm

            # some tmp vars
            st_b = tf.sin(theta)
            ct_b = tf.cos(theta)
            one_ct_b = 1.0 - tf.cos(theta)

            st = st_b[:, 0]
            ct = ct_b[:, 0]
            one_ct = one_ct_b[:, 0]
            norm_fac = 1.0 / u_norm[:, 0]
            ux = ux_b[:, 0] * norm_fac
            uy = uy_b[:, 0] * norm_fac
            uz = uz_b[:, 0] * norm_fac

            trafo_matrix = self._stitch_mat_from_vecs([ct+ux*ux*one_ct, ux*uy*one_ct-uz*st, ux*uz*one_ct+uy*st,
                                                       uy*ux*one_ct+uz*st, ct+uy*uy*one_ct, uy*uz*one_ct-ux*st,
                                                       uz*ux*one_ct-uy*st, uz*uy*one_ct+ux*st, ct+uz*uz*one_ct])

            return trafo_matrix
项目:dizzy_layer    作者:Pastromhaug    | 项目源码 | 文件源码
def DizzyLayerV2(X, rot_list, n):
    n_prime = int(n*(n-1)/2)
    thetas = tf.Variable(tf.random_uniform([n_prime, 1], 0, 2*math.pi), name="thetas")

    results = [X]
    k = 0
    for sublist in rot_list:
        indices = []
        values = []
        for (a, b) in sublist:
            c = tf.cos(thetas[k])
            s = tf.sin(thetas[k])
            indices = indices + [[a, a], [a, b], [b, a], [b, b]]
            values = values + [c, s, -s, c]
            k += 1
        shape = [n, n]
        v = tf.pack(tf.squeeze(values))
        R = tf.SparseTensor(indices, v, shape)
        results.append(tf.sparse_tensor_dense_matmul(R, results[-1]))
    return results[-1]
项目:dizzy_layer    作者:Pastromhaug    | 项目源码 | 文件源码
def DizzyLayerV1(X, indices):
    n = int(X.get_shape()[0])
    n_prime = int(n*(n-1)/2)
    thetas = tf.Variable(tf.random_uniform([n_prime, 1], 0, 2*math.pi), name="thetas")
    X_split = [X[k, :] for k in range(n)]
    for k in range(n_prime):
        (a, b) = indices[k]
        theta = thetas[k]
        c = tf.cos(theta)
        s = tf.sin(theta)
        v_1 =  c*X_split[a]+s*X_split[b]
        v_2 = -s*X_split[a]+c*X_split[b]
        X_split[a] = v_1
        X_split[b] = v_2
    out = tf.pack(X_split)
    return out
项目:tf-vaegan    作者:JeremyCCHsu    | 项目源码 | 文件源码
def interpolate(self, x1, x2, n):
        ''' Interpolation from the latent space '''
        x1 = tf.expand_dims(x1, 0)
        x2 = tf.expand_dims(x2, 0)
        z1, _ = self._encode(x1, is_training=False)
        z2, _ = self._encode(x2, is_training=False)

        def L2norm(x):
            return tf.sqrt(tf.reduce_sum(tf.square(x), -1))

        norm1 = L2norm(z1)
        norm2 = L2norm(z2)

        theta = tf.matmul(z1/norm1, z2/norm2, transpose_b=True)

        a = tf.reshape(tf.linspace(0., 1., n), [n, 1])  # 10x1

        a1 = tf.sin((1. - a) * theta) / tf.sin(theta)
        a2 = tf.sin(a * theta) / tf.sin(theta)
        z = a1 * z1 + a2 * z2

        xh = self._generate(z, is_training=False)
        xh = tf.concat(0, [x1, xh, x2])
        return xh
项目:gm-cml    作者:wangyida    | 项目源码 | 文件源码
def gabor(ksize=32):
    """Use Tensorflow to compute a 2D Gabor Kernel.

    Parameters
    ----------
    ksize : int, optional
        Size of kernel.

    Returns
    -------
    gabor : np.ndarray
        Gabor kernel with ksize x ksize dimensions.
    """
    g = tf.Graph()
    with tf.Session(graph=g):
        z_2d = gauss2d(0.0, 1.0, ksize)
        ones = tf.ones((1, ksize))
        ys = tf.sin(tf.linspace(-3.0, 3.0, ksize))
        ys = tf.reshape(ys, [ksize, 1])
        wave = tf.matmul(ys, ones)
        gabor = tf.mul(wave, z_2d)
        return gabor.eval()
项目:TF-FaceLandmarkDetection    作者:mariolew    | 项目源码 | 文件源码
def gabor(ksize=32):
    """Use Tensorflow to compute a 2D Gabor Kernel.

    Parameters
    ----------
    ksize : int, optional
        Size of kernel.

    Returns
    -------
    gabor : np.ndarray
        Gabor kernel with ksize x ksize dimensions.
    """
    g = tf.Graph()
    with tf.Session(graph=g):
        z_2d = gauss2d(0.0, 1.0, ksize)
        ones = tf.ones((1, ksize))
        ys = tf.sin(tf.linspace(-3.0, 3.0, ksize))
        ys = tf.reshape(ys, [ksize, 1])
        wave = tf.matmul(ys, ones)
        gabor = tf.mul(wave, z_2d)
        return gabor.eval()
项目:tensor2tensor    作者:tensorflow    | 项目源码 | 文件源码
def get_timing_signal(length,
                      min_timescale=1,
                      max_timescale=1e4,
                      num_timescales=16):
  """Create Tensor of sinusoids of different frequencies.

  Args:
    length: Length of the Tensor to create, i.e. Number of steps.
    min_timescale: a float
    max_timescale: a float
    num_timescales: an int

  Returns:
    Tensor of shape (length, 2*num_timescales)
  """
  positions = tf.to_float(tf.range(length))
  log_timescale_increment = (
      math.log(max_timescale / min_timescale) / (num_timescales - 1))
  inv_timescales = min_timescale * tf.exp(
      tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
  return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
项目:vae-style-transfer    作者:sunsided    | 项目源码 | 文件源码
def gabor(ksize=32):
    """Use Tensorflow to compute a 2D Gabor Kernel.

    Parameters
    ----------
    ksize : int, optional
        Size of kernel.

    Returns
    -------
    gabor : np.ndarray
        Gabor kernel with ksize x ksize dimensions.
    """
    g = tf.Graph()
    with tf.Session(graph=g):
        z_2d = gauss2d(0.0, 1.0, ksize)
        ones = tf.ones((1, ksize))
        ys = tf.sin(tf.linspace(-3.0, 3.0, ksize))
        ys = tf.reshape(ys, [ksize, 1])
        wave = tf.matmul(ys, ones)
        gabor = tf.mul(wave, z_2d)
        return gabor.eval()
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def sin(x):
    '''Computes sin of x element-wise.
    '''
    return tf.sin(x)
项目:HyperGAN    作者:255BITS    | 项目源码 | 文件源码
def sin_and_cos(x, name="ignored"):
    return tf.concat(axis=len(x.get_shape()) - 1, values=[tf.sin(x), tf.cos(x)])
项目:HyperGAN    作者:255BITS    | 项目源码 | 文件源码
def gaussian(config, gan, net):
    z_dim = int(config.z)
    net = (net + 1) / 2

    za = tf.slice(net, [0,0], [gan.batch_size(), z_dim//2])
    zb = tf.slice(net, [0,z_dim//2], [gan.batch_size(), z_dim//2])

    pi = np.pi
    ra = tf.sqrt(-2 * tf.log(za+TINY))*tf.cos(2*pi*zb)
    rb = tf.sqrt(-2 * tf.log(za+TINY))*tf.sin(2*pi*zb)

    return tf.reshape(tf.concat(axis=1, values=[ra, rb]), net.get_shape())
项目:HyperGAN    作者:255BITS    | 项目源码 | 文件源码
def periodic_triangle_waveform(z, p):
    return 2.0 / np.pi * tf.asin(tf.sin(2*np.pi*z/p))
项目:HyperGAN    作者:255BITS    | 项目源码 | 文件源码
def __init__(self, args):
        with tf.device(args.device):
            def circle(x):
                spherenet = tf.square(x)
                spherenet = tf.reduce_sum(spherenet, 1)
                lam = tf.sqrt(spherenet)
                return x/tf.reshape(lam,[int(lam.get_shape()[0]), 1])

            def modes(x):
                return tf.round(x*2)/2.0

            if args.distribution == 'circle':
                x = tf.random_normal([args.batch_size, 2])
                x = circle(x)
            elif args.distribution == 'modes':
                x = tf.random_uniform([args.batch_size, 2], -1, 1)
                x = modes(x)
            elif args.distribution == 'sin':
                x = tf.random_uniform((1, args.batch_size), -10.5, 10.5 )
                x = tf.transpose(x)
                r_data = tf.random_normal((args.batch_size,1), mean=0, stddev=0.1)
                xy = tf.sin(0.75*x)*7.0+x*0.5+r_data*1.0
                x = tf.concat([xy,x], 1)/16.0

            elif args.distribution == 'arch':
                offset1 = tf.random_uniform((1, args.batch_size), -10, 10 )
                xa = tf.random_uniform((1, 1), 1, 4 )
                xb = tf.random_uniform((1, 1), 1, 4 )
                x1 = tf.random_uniform((1, args.batch_size), -1, 1 )
                xcos = tf.cos(x1*np.pi + offset1)*xa
                xsin = tf.sin(x1*np.pi + offset1)*xb
                x = tf.transpose(tf.concat([xcos,xsin], 0))/16.0

            self.x = x
            self.xy = tf.zeros_like(self.x)
项目:py-noisemaker    作者:aayars    | 项目源码 | 文件源码
def wormhole(tensor, shape, kink, input_stride, alpha=1.0):
    """
    Apply per-pixel field flow. Non-iterative.

    :param Tensor tensor:
    :param list[int] shape:
    :param float kink: Path twistiness
    :param float input_stride: Maximum pixel offset
    :return: Tensor
    """

    height, width, channels = shape

    values = value_map(tensor, shape)

    degrees = values * 360.0 * math.radians(1) * kink
    # stride = values * height * input_stride
    stride = height * input_stride

    x_index = tf.cast(row_index(shape), tf.float32)
    y_index = tf.cast(column_index(shape), tf.float32)

    x_offset = (tf.cos(degrees) + 1) * stride
    y_offset = (tf.sin(degrees) + 1) * stride

    x = tf.cast(x_index + x_offset, tf.int32) % width
    y = tf.cast(y_index + y_offset, tf.int32) % height

    luminosity = tf.square(tf.reshape(values, [height, width, 1]))

    out = normalize(tf.scatter_nd(offset_index(y, height, x, width), tensor * luminosity, tf.shape(tensor)))

    return blend(tensor, tf.sqrt(out), alpha)
项目:hyperchamber    作者:255BITS    | 项目源码 | 文件源码
def sin_and_cos(x, name="ignored"):
    return tf.concat(len(x.get_shape()) - 1, [tf.sin(x), tf.cos(x)])
项目:aboleth    作者:data61    | 项目源码 | 文件源码
def _transformation(self, XP):
        """Build the kernel feature space transformation."""
        real = tf.cos(XP)
        imag = tf.sin(XP)
        Net = tf.concat([real, imag], axis=-1) / np.sqrt(self.n_features)
        return Net
项目:intelligent-agents    作者:PrieureDeSion    | 项目源码 | 文件源码
def func_to_approx(x):
    return tf.sin(x)
项目:urnn    作者:Rand0mUsername    | 项目源码 | 文件源码
def __init__(self, name, num_units):
        init_w = tf.random_uniform([num_units], minval=-np.pi, maxval=np.pi)
        self.w = tf.Variable(init_w, name=name)
        self.vec = tf.complex(tf.cos(self.w), tf.sin(self.w))

    # [batch_sz, num_units]
项目:keraflow    作者:ipod825    | 项目源码 | 文件源码
def sin(self, x):
        '''Computes sin of x element-wise.
        '''
        return tf.sin(x)
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def sin(x):
    """Computes sin of x element-wise.

    # Returns
        A tensor.
    """
    return tf.sin(x)
项目:complex_tf    作者:woodshop    | 项目源码 | 文件源码
def testCplxSinGPU(self):
        shapes = [(5,4,3), (5,4), (5,), (1,)]
        for sh in shapes:
            x = ((np.random.randn(*sh) +
                  1j*np.random.randn(*sh)).astype(np.complex64))
            self._compareGpu(x, np.sin, tf.sin)
项目:complex_tf    作者:woodshop    | 项目源码 | 文件源码
def testCplxSinGradGPU(self):
        shapes = [(5,4,3), (5,4), (5,), (1,)]
        for sh in shapes:
            x = ((np.random.randn(*sh) +
                  1j*np.random.randn(*sh)).astype(np.complex64))
            self._compareGpuGrad(x, np.sin, tf.sin)
项目:spykes    作者:KordingLab    | 项目源码 | 文件源码
def call(self, inputs):
        k1 = tf.matmul(tf.cos(inputs), self.k1 * tf.cos(self.mu))
        k2 = tf.matmul(tf.sin(inputs), self.k2 * tf.sin(self.mu))

        # Defines the two model formulations: "glm" vs "gvm".
        if self.model_type == 'glm':
            return tf.exp(k1 + k2 + self.k0)
        else:
            return tf.nn.softplus(self.b) + self.g * tf.exp(k1 + k2)
项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def _J(self, theta):
        """
        Implements the order dependent family of functions defined in equations
        4 to 7 in the reference paper.
        """
        if self.order == 0:
            return np.pi - theta
        elif self.order == 1:
            return tf.sin(theta) + (np.pi - theta) * tf.cos(theta)
        elif self.order == 2:
            return 3. * tf.sin(theta) * tf.cos(theta) + \
                   (np.pi - theta) * (1. + 2. * tf.cos(theta) ** 2)
项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def K(self, X, X2=None, presliced=False):
        if not presliced:
            X, X2 = self._slice(X, X2)
        if X2 is None:
            X2 = X

        # Introduce dummy dimension so we can use broadcasting
        f = tf.expand_dims(X, 1)  # now N x 1 x D
        f2 = tf.expand_dims(X2, 0)  # now 1 x M x D

        r = np.pi * (f - f2) / self.period
        r = tf.reduce_sum(tf.square(tf.sin(r) / self.lengthscales), 2)

        return self.variance * tf.exp(-0.5 * r)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def setUp(self):
    super(CoreUnaryOpsTest, self).setUp()

    self.ops = [
        ('abs', operator.abs, tf.abs, core.abs_function),
        ('neg', operator.neg, tf.neg, core.neg),
        # TODO(shoyer): add unary + to core TensorFlow
        ('pos', None, None, None),
        ('sign', None, tf.sign, core.sign),
        ('reciprocal', None, tf.reciprocal, core.reciprocal),
        ('square', None, tf.square, core.square),
        ('round', None, tf.round, core.round_function),
        ('sqrt', None, tf.sqrt, core.sqrt),
        ('rsqrt', None, tf.rsqrt, core.rsqrt),
        ('log', None, tf.log, core.log),
        ('exp', None, tf.exp, core.exp),
        ('log', None, tf.log, core.log),
        ('ceil', None, tf.ceil, core.ceil),
        ('floor', None, tf.floor, core.floor),
        ('cos', None, tf.cos, core.cos),
        ('sin', None, tf.sin, core.sin),
        ('tan', None, tf.tan, core.tan),
        ('acos', None, tf.acos, core.acos),
        ('asin', None, tf.asin, core.asin),
        ('atan', None, tf.atan, core.atan),
        ('lgamma', None, tf.lgamma, core.lgamma),
        ('digamma', None, tf.digamma, core.digamma),
        ('erf', None, tf.erf, core.erf),
        ('erfc', None, tf.erfc, core.erfc),
        ('lgamma', None, tf.lgamma, core.lgamma),
    ]
    total_size = np.prod([v.size for v in self.original_lt.axes.values()])
    self.test_lt = core.LabeledTensor(
        tf.cast(self.original_lt, tf.float32) / total_size,
        self.original_lt.axes)
项目:blog    作者:metaflow-ai    | 项目源码 | 文件源码
def func_to_approx(x):
    return tf.sin(x)
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def sin(x):
    '''Computes sin of x element-wise.
    '''
    return tf.sin(x)
项目:tensorflow_with_latest_papers    作者:NickShahML    | 项目源码 | 文件源码
def get_unit_variable_c( name, scope, shape ):
    theta = tf.get_variable(name, shape=shape, initializer = tf.random_uniform_initializer(-pi,pi) )
    return tf.complex( tf.cos(theta), tf.sin(theta) )
项目:streetview    作者:ydnaandy123    | 项目源码 | 文件源码
def sin_and_cos(x, name="ignored"):
    return tf.concat(len(x.get_shape()) - 1, [tf.sin(x), tf.cos(x)])
项目:hand3d    作者:lmb-freiburg    | 项目源码 | 文件源码
def _get_rot_mat_x_hom(angle):
    """ Returns a 3D rotation matrix in homogeneous coords.  """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([one_vec, zero_vec, zero_vec, zero_vec,
                                          zero_vec, tf.cos(angle), -tf.sin(angle), zero_vec,
                                          zero_vec, tf.sin(angle), tf.cos(angle), zero_vec,
                                          zero_vec, zero_vec, zero_vec, one_vec])
    return trafo_matrix
项目:hand3d    作者:lmb-freiburg    | 项目源码 | 文件源码
def _get_rot_mat_y_hom(angle):
    """ Returns a 3D rotation matrix in homogeneous coords.  """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([tf.cos(angle), zero_vec, tf.sin(angle), zero_vec,
                                          zero_vec, one_vec, zero_vec, zero_vec,
                                          -tf.sin(angle), zero_vec, tf.cos(angle), zero_vec,
                                          zero_vec, zero_vec, zero_vec, one_vec])
    return trafo_matrix
项目:hand3d    作者:lmb-freiburg    | 项目源码 | 文件源码
def _get_rot_mat_z_hom(angle):
    """ Returns a 3D rotation matrix in homogeneous coords. """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([tf.cos(angle), -tf.sin(angle), zero_vec, zero_vec,
                                          tf.sin(angle), tf.cos(angle), zero_vec, zero_vec,
                                          zero_vec, zero_vec, one_vec, zero_vec,
                                          zero_vec, zero_vec, zero_vec, one_vec])
    return trafo_matrix
项目:hand3d    作者:lmb-freiburg    | 项目源码 | 文件源码
def _get_rot_mat_y(angle):
    """ Returns a 3D rotation matrix. """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([tf.cos(angle), zero_vec, -tf.sin(angle),
                                          zero_vec, one_vec, zero_vec,
                                          tf.sin(angle), zero_vec, tf.cos(angle)])
    return trafo_matrix
项目:hand3d    作者:lmb-freiburg    | 项目源码 | 文件源码
def _get_rot_mat_z(angle):
    """ Returns a 3D rotation matrix. """
    one_vec = tf.ones_like(angle)
    zero_vec = one_vec*0.0
    trafo_matrix = _stitch_mat_from_vecs([tf.cos(angle), tf.sin(angle), zero_vec,
                                          -tf.sin(angle), tf.cos(angle), zero_vec,
                                          zero_vec, zero_vec, one_vec])
    return trafo_matrix
项目:dizzy_layer    作者:Pastromhaug    | 项目源码 | 文件源码
def buildRotations(n, rand_or_identity,num_rots=None):
    print("num_rots: %d" %num_rots)
    num_rots = num_rots or (n-1)
    n_prime = int(n*(n-1)//2*num_rots/(n-1))
    outputs = []

    with vs.variable_scope("Build_Rotations"):

        (indices, values_idxs) = rotationPreprocess(n, num_rots)
        if rand_or_identity:
            print("Initialization: Random")
            thetas = vs.get_variable(initializer=tf.random_uniform([n_prime, 1], 0, 2*math.pi),
                    name="Thetas_RandInit", dtype=tf.float32)
        else:
            print("Initialization: Identity")
            thetas = vs.get_variable(initializer=tf.zeros([n_prime, 1]),
                    name="Thetas_OnesInit", dtype=tf.float32)
        cos = tf.cos(thetas)
        sin = tf.sin(thetas)
        nsin = tf.neg(sin)

        thetas_concat = tf.concat(0, [cos,sin,nsin])

        gathered_values = tf.squeeze(tf.gather(thetas_concat, values_idxs))
        shape = tf.constant([n, n], dtype=tf.int64)

        splt_values = tf.split(0, num_rots, gathered_values)
        splt_indices = tf.split(0, num_rots, indices)

        shape = tf.constant([n,n], dtype=tf.int64)
        for i in range(num_rots):
            curr_indices = splt_indices[i]
            curr_values = splt_values[i]
            sparse_rot = tf.SparseTensor(indices=curr_indices, values=curr_values, shape=shape)
            outputs.append(sparse_rot)
    print("buildRotations output length: %d" % len(outputs))
    return outputs
项目:dizzy_layer    作者:Pastromhaug    | 项目源码 | 文件源码
def rotationTransform(X, n, scope, num_rots=None):
    num_rots = num_rots or (n-1)
    n_prime = int(n*(n-1)//2*num_rots/(n-1))
    outputs = []

    with vs.variable_scope(scope or "RotationTransform"):

        for i, (name, x) in enumerate(X):
            (indices, values_idxs) = rotationPreprocess(n, num_rots)
            thetas = vs.get_variable(initializer=tf.random_uniform([n_prime, 1], 0, 2*math.pi),
                    name="Thetas"+str(i)+name, dtype=tf.float32)

            cos = tf.cos(thetas)
            sin = tf.sin(thetas)
            nsin = tf.neg(sin)

            thetas_concat = tf.concat(0, [cos,sin,nsin])

            gathered_values = tf.squeeze(tf.gather(thetas_concat, values_idxs))
            shape = tf.constant([n, n], dtype=tf.int64)

            splt_values = tf.split(0, num_rots, gathered_values)
            splt_indices = tf.split(0, num_rots, indices)

            shape = tf.constant([n,n], dtype=tf.int64)
            for i in range(num_rots):
                curr_indices = splt_indices[i]
                curr_values = splt_values[i]
                sparse_rot = tf.SparseTensor(indices=curr_indices, values=curr_values, shape=shape)
                x = tf.sparse_tensor_dense_matmul(sparse_rot, x)
            outputs.append(x)
    return outputs
项目:monodepth360    作者:srijanparmeshwar    | 项目源码 | 文件源码
def lat_long_to_xyz(S, T):
    x = tf.cos(T) * tf.sin(S)
    y = tf.sin(T)
    z = tf.cos(T) * tf.cos(S)
    return x, y, z
项目:monodepth360    作者:srijanparmeshwar    | 项目源码 | 文件源码
def backproject(S, T, depth):
    # Convert to Cartesian for modified depth input.
    # depth = sqrt(x^2 + z^2).
    x = depth * tf.sin(S)
    y = depth * tf.tan(T)
    z = depth * tf.cos(S)
    return x, y, z
项目:THUMT    作者:thumt    | 项目源码 | 文件源码
def add_timing_signal(x, min_timescale=1.0, max_timescale=1.0e4, name=None):
    """
    This function adds a bunch of sinusoids of different frequencies to a
    Tensor. See paper: Attention is all you need

    :param x: A tensor with shape [batch, length, channels]
    :param min_timescale: A floating point number
    :param max_timescale: A floating point number
    :param name: An optional string

    :returns: a Tensor the same shape as x.
    """

    with tf.name_scope(name, default_name="add_timing_signal", values=[x]):
        length = tf.shape(x)[1]
        channels = tf.shape(x)[2]
        position = tf.to_float(tf.range(length))
        num_timescales = channels // 2

        log_timescale_increment = (
            math.log(float(max_timescale) / float(min_timescale)) /
            (tf.to_float(num_timescales) - 1)
        )
        inv_timescales = min_timescale * tf.exp(
            tf.to_float(tf.range(num_timescales)) * -log_timescale_increment
        )

        scaled_time = (tf.expand_dims(position, 1) *
                       tf.expand_dims(inv_timescales, 0))
        signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
        signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]])
        signal = tf.reshape(signal, [1, length, channels])

        return x + signal
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def sine_wave(frequency):
  """Emit a sine wave at the given frequency."""
  xs = tf.reshape(tf.range(_samples(), dtype=tf.float32), [1, _samples(), 1])
  ts = xs / FLAGS.sample_rate
  return tf.sin(2 * math.pi * frequency * ts)
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def bisine_wahwah_wave(frequency):
  """Emit two sine waves with balance oscillating left and right."""
  #
  # This is clearly intended to build on the bisine wave defined above,
  # so we can start by generating that.
  waves_a = bisine_wave(frequency)
  #
  # Then, by reversing axis 2, we swap the stereo channels. By mixing
  # this with `waves_a`, we'll be able to create the desired effect.
  waves_b = tf.reverse(waves_a, axis=[2])
  #
  # Let's have the balance oscillate from left to right four times.
  iterations = 4
  #
  # Now, we compute the balance for each sample: `ts` has values
  # in [0, 1] that indicate how much we should use `waves_a`.
  xs = tf.reshape(tf.range(_samples(), dtype=tf.float32), [1, _samples(), 1])
  thetas = xs / _samples() * iterations
  ts = (tf.sin(math.pi * 2 * thetas) + 1) / 2
  #
  # Finally, we can mix the two together, and we're done.
  wave = ts * waves_a + (1.0 - ts) * waves_b
  #
  # Alternately, we can make the effect more pronounced by exaggerating
  # the sample data. Let's emit both variations.
  exaggerated_wave = wave ** 3.0
  return tf.concat([wave, exaggerated_wave], axis=0)
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def sin(x):
    """Computes sin of x element-wise.

    # Returns
        A tensor.
    """
    return tf.sin(x)