我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.Assert()。
def value_transition(self, curr_state, next_symbols, batch_size): first_value_token = self.num_functions + self.num_begin_tokens + self.num_control_tokens num_value_tokens = self.output_size - first_value_token with tf.name_scope('grammar_transition'): adjusted_next_symbols = tf.where(next_symbols >= self.num_control_tokens, next_symbols + (first_value_token - self.num_control_tokens), next_symbols) assert1 = tf.Assert(tf.reduce_all(tf.logical_and(next_symbols < num_value_tokens, next_symbols >= 0)), [curr_state, next_symbols]) with tf.control_dependencies([assert1]): transitions = tf.gather(tf.constant(self.transition_matrix), curr_state) assert transitions.get_shape()[1:] == (self.output_size,) indices = tf.stack((tf.range(0, batch_size), adjusted_next_symbols), axis=1) next_state = tf.gather_nd(transitions, indices) assert2 = tf.Assert(tf.reduce_all(next_state >= 0), [curr_state, adjusted_next_symbols, next_state]) with tf.control_dependencies([assert2]): return tf.identity(next_state)
def gauss_KL(mu1, logstd1, mu2, logstd2): """ Returns KL divergence among two multivariate Gaussians, component-wise. It assumes the covariance matrix is diagonal. All inputs have shape (n,a). It is not necessary to know the number of actions because reduce_sum will sum over this to get the `d` constant offset. The part consisting of the trace in the formula is blended with the mean difference squared due to the common "denominator" of var2_na. This forumula generalizes for an arbitrary number of actions. I think mu2 and logstd2 should represent the policy before the update. Returns the KL divergence for each of the n components in the minibatch, then we do a reduce_mean outside this. """ var1_na = tf.exp(2.*logstd1) var2_na = tf.exp(2.*logstd2) tmp_matrix = 2.*(logstd2 - logstd1) + (var1_na + tf.square(mu1-mu2))/var2_na - 1 kl_n = tf.reduce_sum(0.5 * tmp_matrix, axis=[1]) # Don't forget the 1/2 !! assert_op = tf.Assert(tf.reduce_all(kl_n >= -0.0000001), [kl_n]) with tf.control_dependencies([assert_op]): kl_n = tf.identity(kl_n) return kl_n
def get_cubic_root(self): # We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2 # where x = sqrt(mu). # We substitute x, which is sqrt(mu), with x = y + 1. # It gives y^3 + py = q # where p = (D^2 h_min^2)/(2*C) and q = -p. # We use the Vieta's substution to compute the root. # There is only one real solution y (which is in [0, 1] ). # http://mathworld.wolfram.com/VietasSubstitution.html # assert_array = \ # [tf.Assert(tf.logical_not(tf.is_nan(self._dist_to_opt_avg) ), [self._dist_to_opt_avg,]), # tf.Assert(tf.logical_not(tf.is_nan(self._h_min) ), [self._h_min,]), # tf.Assert(tf.logical_not(tf.is_nan(self._grad_var) ), [self._grad_var,]), # tf.Assert(tf.logical_not(tf.is_inf(self._dist_to_opt_avg) ), [self._dist_to_opt_avg,]), # tf.Assert(tf.logical_not(tf.is_inf(self._h_min) ), [self._h_min,]), # tf.Assert(tf.logical_not(tf.is_inf(self._grad_var) ), [self._grad_var,])] # with tf.control_dependencies(assert_array): # EPS in the numerator to prevent momentum being exactly one in case of 0 gradient p = (self._dist_to_opt_avg + EPS)**2 * (self._h_min + EPS)**2 / 2 / (self._grad_var + EPS) w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0 w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0/3.0) y = w - p / 3.0 / (w + EPS) x = y + 1 return x
def _crop(image, offset_height, offset_width, crop_height, crop_width): original_shape = tf.shape(image) rank_assertion = tf.Assert( tf.equal(tf.rank(image), 3), ['Rank of image must be equal to 3.']) cropped_shape = control_flow_ops.with_dependencies( [rank_assertion], tf.stack([crop_height, crop_width, original_shape[2]])) size_assertion = tf.Assert( tf.logical_and( tf.greater_equal(original_shape[0], crop_height), tf.greater_equal(original_shape[1], crop_width)), ['Crop size greater than the image size.']) offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0])) # Use tf.slice instead of crop_to_bounding box as it accepts tensors to # define the crop size. image = control_flow_ops.with_dependencies([size_assertion], tf.slice(image, offsets, cropped_shape)) return tf.reshape(image, cropped_shape)
def _crop(image, offset_height, offset_width, crop_height, crop_width): original_shape = tf.shape(image) rank_assertion = tf.Assert( tf.equal(tf.rank(image), 3), ['Rank of image must be equal to 3.']) cropped_shape = control_flow_ops.with_dependencies( [rank_assertion], tf.stack([crop_height, crop_width, original_shape[2]])) size_assertion = tf.Assert( tf.logical_and( tf.greater_equal(original_shape[0], crop_height), tf.greater_equal(original_shape[1], crop_width)), ['Crop size greater than the image size.']) offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0])) # Use tf.slice instead of crop_to_bounding box as it accepts tensors to # define the crop size. image = control_flow_ops.with_dependencies( [size_assertion], tf.slice(image, offsets, cropped_shape)) return tf.reshape(image, cropped_shape)
def preturn_network(rewards, discounts, values): # First reward must be zero, first discount must be one first_reward = tf.Assert( tf.reduce_all(tf.equal(rewards[:, 0, :], 0.0)), [rewards[:, 0, :]]) first_discount = tf.Assert( tf.reduce_all(tf.equal(discounts[:, 0, :], 1.0)), [discounts[:, 0, :]]) with tf.control_dependencies([first_reward, first_discount]): with tf.variable_scope('preturn'): accum_value_discounts = tf.cumprod(discounts, axis=1, exclusive=False) accum_reward_discounts = tf.cumprod(discounts, axis=1, exclusive=True) discounted_values = values * accum_value_discounts discounted_rewards = rewards * accum_reward_discounts cumulative_rewards = tf.cumsum(discounted_rewards, axis=1) preturns = cumulative_rewards + discounted_values util.activation_summary(preturns) return preturns
def decoderFn(num_samples=1): class decoder_func(slim.data_decoder.DataDecoder): @staticmethod def list_items(): return ['image', 'label'] @staticmethod def decode(data, items): image_buffer = _decode_from_string(data) # if num_samples == 1: # tf.Assert(tf.shape(image_buffer)[0] == 1, image_buffer) # image_buffer = image_buffer[0] # else: image_buffer = tf.pack(image_buffer) return image_buffer return decoder_func
def get_function_init_state(self, function_tokens): next_state = tf.gather(self.function_states, function_tokens - (self.num_begin_tokens + self.num_control_tokens)) assert2 = tf.Assert(tf.reduce_all(next_state >= 0), [function_tokens]) with tf.control_dependencies([assert2]): return tf.identity(next_state)
def _tf_nth(fns, n): """Runs only the nth element of fns, where n is a scalar integer tensor.""" cases = [(tf.equal(tf.constant(i, n.dtype), n), fn) for i, fn in enumerate(fns)] final_pred, final_fn = cases.pop() def default(): with tf.control_dependencies([ tf.Assert(final_pred, [n, len(fns)], name='nth_index_error')]): return final_fn() if len(fns) == 1: return default() return tf.case(cases, default)
def crop(images, boxes, batch_inds, stride = 1, pooled_height = 7, pooled_width = 7, scope='ROIAlign'): """Cropping areas of features into fixed size Params: -------- images: a 4-d Tensor of shape (N, H, W, C) boxes: rois in the original image, of shape (N, ..., 4), [x1, y1, x2, y2] batch_inds: Returns: -------- A Tensor of shape (N, pooled_height, pooled_width, C) """ with tf.name_scope(scope): # boxes = boxes / (stride + 0.0) boxes = tf.reshape(boxes, [-1, 4]) # normalize the boxes and swap x y dimensions shape = tf.shape(images) boxes = tf.reshape(boxes, [-1, 2]) # to (x, y) xs = boxes[:, 0] ys = boxes[:, 1] xs = xs / tf.cast(shape[2], tf.float32) ys = ys / tf.cast(shape[1], tf.float32) boxes = tf.concat([ys[:, tf.newaxis], xs[:, tf.newaxis]], axis=1) boxes = tf.reshape(boxes, [-1, 4]) # to (y1, x1, y2, x2) # if batch_inds is False: # num_boxes = tf.shape(boxes)[0] # batch_inds = tf.zeros([num_boxes], dtype=tf.int32, name='batch_inds') # batch_inds = boxes[:, 0] * 0 # batch_inds = tf.cast(batch_inds, tf.int32) # assert_op = tf.Assert(tf.greater(tf.shape(images)[0], tf.reduce_max(batch_inds)), [images, batch_inds]) assert_op = tf.Assert(tf.greater(tf.size(images), 0), [images, batch_inds]) with tf.control_dependencies([assert_op, images, batch_inds]): return tf.image.crop_and_resize(images, boxes, batch_inds, [pooled_height, pooled_width], method='bilinear', name='Crop')
def _crop(image, offset_height, offset_width, crop_height, crop_width): """Crops the given image using the provided offsets and sizes. Note that the method doesn't assume we know the input image size but it does assume we know the input image rank. Args: image: an image of shape [height, width, channels]. offset_height: a scalar tensor indicating the height offset. offset_width: a scalar tensor indicating the width offset. crop_height: the height of the cropped image. crop_width: the width of the cropped image. Returns: the cropped (and resized) image. Raises: InvalidArgumentError: if the rank is not 3 or if the image dimensions are less than the crop size. """ original_shape = tf.shape(image) rank_assertion = tf.Assert( tf.equal(tf.rank(image), 3), ['Rank of image must be equal to 3.']) with tf.control_dependencies([rank_assertion]): cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]]) size_assertion = tf.Assert( tf.logical_and( tf.greater_equal(original_shape[0], crop_height), tf.greater_equal(original_shape[1], crop_width)), ['Crop size greater than the image size.']) offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0])) # Use tf.slice instead of crop_to_bounding box as it accepts tensors to # define the crop size. with tf.control_dependencies([size_assertion]): image = tf.slice(image, offsets, cropped_shape) return tf.reshape(image, cropped_shape)
def _get_cubic_root(self): """Get the cubic root.""" # We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2 # where x = sqrt(mu). # We substitute x, which is sqrt(mu), with x = y + 1. # It gives y^3 + py = q # where p = (D^2 h_min^2)/(2*C) and q = -p. # We use the Vieta's substution to compute the root. # There is only one real solution y (which is in [0, 1] ). # http://mathworld.wolfram.com/VietasSubstitution.html assert_array = [ tf.Assert( tf.logical_not(tf.is_nan(self._dist_to_opt_avg)), [self._dist_to_opt_avg, ]), tf.Assert( tf.logical_not(tf.is_nan(self._h_min)), [self._h_min, ]), tf.Assert( tf.logical_not(tf.is_nan(self._grad_var)), [self._grad_var, ]), tf.Assert( tf.logical_not(tf.is_inf(self._dist_to_opt_avg)), [self._dist_to_opt_avg, ]), tf.Assert( tf.logical_not(tf.is_inf(self._h_min)), [self._h_min, ]), tf.Assert( tf.logical_not(tf.is_inf(self._grad_var)), [self._grad_var, ]) ] with tf.control_dependencies(assert_array): p = self._dist_to_opt_avg**2 * self._h_min**2 / 2 / self._grad_var w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0 w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0 / 3.0) y = w - p / 3.0 / w x = y + 1 return x
def correlation_loss(source_samples, target_samples, weight, name='corr_loss'): """Adds a similarity loss term, the correlation between two representations. Args: source_samples: a tensor of shape [num_samples, num_features] target_samples: a tensor of shape [num_samples, num_features] weight: a scalar weight for the loss. scope: optional name scope for summary tags. Returns: a scalar tensor representing the correlation loss value. """ with tf.name_scope(name): source_samples -= tf.reduce_mean(source_samples, 0) target_samples -= tf.reduce_mean(target_samples, 0) source_samples = tf.nn.l2_normalize(source_samples, 1) target_samples = tf.nn.l2_normalize(target_samples, 1) source_cov = tf.matmul(tf.transpose(source_samples), source_samples) target_cov = tf.matmul(tf.transpose(target_samples), target_samples) corr_loss = tf.reduce_mean( tf.square(source_cov - target_cov)) * weight assert_op = tf.Assert(tf.is_finite(corr_loss), [corr_loss]) with tf.control_dependencies([assert_op]): tag = 'Correlation Loss' barrier = tf.no_op(tag) return corr_loss
def mmd_loss(source_samples, target_samples, weight, name='mmd_loss'): """Adds a similarity loss term, the MMD between two representations. This Maximum Mean Discrepancy (MMD) loss is calculated with a number of different Gaussian kernels. Args: source_samples: a tensor of shape [num_samples, num_features]. target_samples: a tensor of shape [num_samples, num_features]. weight: the weight of the MMD loss. scope: optional name scope for summary tags. Returns: a scalar tensor representing the MMD loss value. """ with tf.name_scope(name): sigmas = [ 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6 ] gaussian_kernel = partial( util.gaussian_kernel_matrix, sigmas=tf.constant(sigmas)) loss_value = maximum_mean_discrepancy( source_samples, target_samples, kernel=gaussian_kernel) loss_value = tf.maximum(1e-4, loss_value) * weight assert_op = tf.Assert(tf.is_finite(loss_value), [loss_value]) with tf.control_dependencies([assert_op]): tag = 'MMD Loss' barrier = tf.no_op(tag) return loss_value
def dann_loss(source_samples, target_samples, weight, name='dann_loss'): """Adds the domain adversarial (DANN) loss Args: source_samples: a tensor of shape [num_samples, num_features]. target_samples: a tensor of shape [num_samples, num_features]. weight: the weight of the loss. scope: optional name scope for summary tags. Returns: a scalar tensor representing the correlation loss value. """ with tf.variable_scope(name): batch_size = tf.shape(source_samples)[0] samples = tf.concat(values=[source_samples, target_samples], axis=0) samples = flatten(samples) domain_selection_mask = tf.concat( values=[tf.zeros((batch_size, 1)), tf.ones((batch_size, 1))], axis=0) grl = gradient_reverse(samples) grl = tf.reshape(grl, (-1, samples.get_shape().as_list()[1])) grl = fc(grl, 100, True, None, activation=relu, name='fc1') logits = fc(grl, 1, True, None, activation=None, name='fc2') domain_predictions = tf.sigmoid(logits) domain_loss = tf.losses.log_loss( domain_selection_mask, domain_predictions, weights=weight) domain_accuracy = util.accuracy_tf(domain_selection_mask, tf.round(domain_predictions)) assert_op = tf.Assert(tf.is_finite(domain_loss), [domain_loss]) with tf.control_dependencies([assert_op]): tag_loss = 'losses/domain_loss' barrier = tf.no_op(tag_loss) return domain_loss
def difference_loss(private_samples, shared_samples, weight=1.0, name='difference_loss'): """Adds the difference loss between the private and shared representations. Args: private_samples: a tensor of shape [num_samples, num_features]. shared_samples: a tensor of shape [num_samples, num_features]. weight: the weight of the incoherence loss. name: the name of the tf summary. """ with tf.name_scope(name): private_samples -= tf.reduce_mean(private_samples, 0) shared_samples -= tf.reduce_mean(shared_samples, 0) private_samples = tf.nn.l2_normalize(private_samples, 1) shared_samples = tf.nn.l2_normalize(shared_samples, 1) correlation_matrix = tf.matmul( private_samples, shared_samples, transpose_a=True) cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight cost = tf.where(cost > 0, cost, 0, name='value') assert_op = tf.Assert(tf.is_finite(cost), [cost]) with tf.control_dependencies([assert_op]): barrier = tf.no_op(name) return cost
def _crop(self, image, offset_height, offset_width, crop_height, crop_width): """Crops the given image using the provided offsets and sizes. Note that the method doesn't assume we know the input image size but it does assume we know the input image rank. Args: image: an image of shape [height, width, channels]. offset_height: a scalar tensor indicating the height offset. offset_width: a scalar tensor indicating the width offset. crop_height: the height of the cropped image. crop_width: the width of the cropped image. Returns: the cropped (and resized) image. Raises: InvalidArgumentError: if the rank is not 3 or if the image dimensions are less than the crop size. """ original_shape = tf.shape(image) rank_assertion = tf.Assert( tf.equal(tf.rank(image), 3), ['Rank of image must be equal to 3.']) with tf.control_dependencies([rank_assertion]): cropped_shape = tf.stack( [crop_height, crop_width, original_shape[2]]) size_assertion = tf.Assert( tf.logical_and( tf.greater_equal(original_shape[0], crop_height), tf.greater_equal(original_shape[1], crop_width)), ['Crop size greater than the image size.']) offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0])) with tf.control_dependencies([size_assertion]): image = tf.slice(image, offsets, cropped_shape) return tf.reshape(image, cropped_shape)
def crop_to_fixed_size(img_tensor,annotation_tensor,output_shape): """ the output_shape must be smaller than the input_shape :param img_tensor: [w,h,depth] :param annotation_tensor: [w,h,1] :param output_shape: :param mask_out_num: :return: (output_shape,output_shape,3) (output_shape,output_shape,1) """ original_shape = tf.shape(img_tensor) crop_width, crop_height = output_shape[0],output_shape[1] image_width, image_height = original_shape[0],original_shape[1] img_cropped_shape = tf.stack([output_shape[0], output_shape[1], 3]) annotate_cropped_shape = tf.stack([output_shape[0], output_shape[1], 1]) size_assertion = tf.Assert( tf.logical_and( tf.greater_equal(original_shape[0], crop_width), tf.greater_equal(original_shape[1], crop_height)), ['Crop size greater than the image size.']) max_offset_height = tf.reshape(image_height - crop_height + 1, []) max_offset_width = tf.reshape(image_width - crop_width + 1, []) offset_height = tf.random_uniform( [], maxval=max_offset_height, dtype=tf.int32) offset_width = tf.random_uniform( [], maxval=max_offset_width, dtype=tf.int32) offsets = tf.to_int32(tf.stack([offset_width, offset_height, 0])) annotation_tensor = tf.to_int32(annotation_tensor) # Use tf.slice instead of crop_to_bounding box as it accepts tensors to # define the crop size. with tf.control_dependencies([size_assertion]): image = tf.slice(img_tensor, offsets, img_cropped_shape) annotate = tf.slice(annotation_tensor,offsets,annotate_cropped_shape) return tf.reshape(image, img_cropped_shape),tf.reshape(annotate,annotate_cropped_shape)
def _crop(image, offset_height, offset_width, crop_height, crop_width): """Crops the given image using the provided offsets and sizes. Note that the method doesn't assume we know the input image size but it does assume we know the input image rank. Args: image: an image of shape [height, width, channels]. offset_height: a scalar tensor indicating the height offset. offset_width: a scalar tensor indicating the width offset. crop_height: the height of the cropped image. crop_width: the width of the cropped image. Returns: the cropped (and resized) image. Raises: InvalidArgumentError: if the rank is not 3 or if the image dimensions are less than the crop size. """ original_shape = tf.shape(image) rank_assertion = tf.Assert( tf.equal(tf.rank(image), 3), ['Rank of image must be equal to 3.']) cropped_shape = control_flow_ops.with_dependencies( [rank_assertion], tf.pack([crop_height, crop_width, original_shape[2]])) size_assertion = tf.Assert( tf.logical_and( tf.greater_equal(original_shape[0], crop_height), tf.greater_equal(original_shape[1], crop_width)), ['Crop size greater than the image size.']) offsets = tf.to_int32(tf.pack([offset_height, offset_width, 0])) # Use tf.slice instead of crop_to_bounding box as it accepts tensors to # define the crop size. image = control_flow_ops.with_dependencies( [size_assertion], tf.slice(image, offsets, cropped_shape)) return tf.reshape(image, cropped_shape)
def loss(self, x, h, q=None): """ Calculate the estimate loss of Importance sampling approximation @Param x(NxD): The target word or batch @Param h(NxD): This is usually the output of neural network @Param q(N): The Weight of target """ # K weights = self.get_sample_weights() tf.Assert(tf.equal(weights, 0.0), [weights]) if weights is None: raise ValueError("sample weights must be set") # KxD samples = self.get_samples() if samples is None: raise ValueError("samples must be set") # N target_scores = tf.reduce_sum(x * h, 1) self.target_exp_ = tf.exp(target_scores) # N x K samples_scores = tf.matmul(h, samples, transpose_b=True) # N exp_weight = tf.exp(samples_scores) / weights self.Z_ = tf.reduce_sum(tf.check_numerics(exp_weight, "each Z "), 1) # The loss of each element in target # N element_loss = target_scores - tf.log(q) - tf.log(self.Z_) loss = tf.reduce_mean(element_loss) return -loss
def lambda_preturn_network(preturns, lambdas): # Final lamdba must be zero final_lambda = tf.Assert( tf.reduce_all(tf.equal(lambdas[:, -1, :], 0.0)), [lambdas[:, -1, :]]) with tf.control_dependencies([final_lambda]): with tf.variable_scope('lambda_preturn'): accum_lambda = tf.cumprod(lambdas, axis=1, exclusive=True) lambda_bar = (1 - lambdas) * accum_lambda # This should always sum to 1 lambda_preturn = tf.reduce_sum( lambda_bar * preturns, reduction_indices=1) util.activation_summary(lambda_preturn) return lambda_preturn
def deserialize(self, state): # Deserialize state from previous timestep. M0 = tf.slice( state, [0, 0], [-1, self.mem_nrows * self.mem_ncols], ) M0 = tf.reshape(M0, [-1, self.mem_nrows, self.mem_ncols]) state_idx = self.mem_nrows * self.mem_ncols # Deserialize read weights from previous time step. read_w0s = [] for i in xrange(self.n_heads): # Number of weights == Rows of memory matrix w0 = tf.slice(state, [0, state_idx], [-1, self.mem_nrows]) read_w0s.append(w0) state_idx += self.mem_nrows # Do the same for write heads. write_w0s = [] for _ in xrange(self.n_heads): w0 = tf.slice(state, [0, state_idx], [-1, self.mem_nrows]) write_w0s.append(w0) state_idx += self.mem_nrows tf.Assert( tf.equal(state_idx, tf.shape(state)[1]), [tf.shape(state)], ) return M0, write_w0s, read_w0s
def crop_(images, boxes, batch_inds, ih, iw, stride = 1, pooled_height = 7, pooled_width = 7, scope='ROIAlign'): """Cropping areas of features into fixed size Params: -------- images: a 4-d Tensor of shape (N, H, W, C) boxes: rois in the original image, of shape (N, ..., 4), [x1, y1, x2, y2] batch_inds: Returns: -------- A Tensor of shape (N, pooled_height, pooled_width, C) """ with tf.name_scope(scope): # boxes = boxes / (stride + 0.0) boxes = tf.reshape(boxes, [-1, 4]) # normalize the boxes and swap x y dimensions shape = tf.shape(images) boxes = tf.reshape(boxes, [-1, 2]) # to (x, y) xs = boxes[:, 0] ys = boxes[:, 1] xs = xs / tf.cast(shape[2], tf.float32) ys = ys / tf.cast(shape[1], tf.float32) boxes = tf.concat([ys[:, tf.newaxis], xs[:, tf.newaxis]], axis=1) boxes = tf.reshape(boxes, [-1, 4]) # to (y1, x1, y2, x2) # if batch_inds is False: # num_boxes = tf.shape(boxes)[0] # batch_inds = tf.zeros([num_boxes], dtype=tf.int32, name='batch_inds') # batch_inds = boxes[:, 0] * 0 # batch_inds = tf.cast(batch_inds, tf.int32) # assert_op = tf.Assert(tf.greater(tf.shape(images)[0], tf.reduce_max(batch_inds)), [images, batch_inds]) assert_op = tf.Assert(tf.greater(tf.size(images), 0), [images, batch_inds]) with tf.control_dependencies([assert_op, images, batch_inds]): return [tf.image.crop_and_resize(images, boxes, batch_inds, [pooled_height, pooled_width], method='bilinear', name='Crop')] + [boxes]
def _get_cubic_root(self): """Get the cubic root.""" # We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2 # where x = sqrt(mu). # We substitute x, which is sqrt(mu), with x = y + 1. # It gives y^3 + py = q # where p = (D^2 h_min^2)/(2*C) and q = -p. # We use the Vieta's substution to compute the root. # There is only one real solution y (which is in [0, 1] ). # http://mathworld.wolfram.com/VietasSubstitution.html assert_array = [ tf.Assert( tf.logical_not(tf.is_nan(self._dist_to_opt_avg)), [self._dist_to_opt_avg,]), tf.Assert( tf.logical_not(tf.is_nan(self._h_min)), [self._h_min,]), tf.Assert( tf.logical_not(tf.is_nan(self._grad_var)), [self._grad_var,]), tf.Assert( tf.logical_not(tf.is_inf(self._dist_to_opt_avg)), [self._dist_to_opt_avg,]), tf.Assert( tf.logical_not(tf.is_inf(self._h_min)), [self._h_min,]), tf.Assert( tf.logical_not(tf.is_inf(self._grad_var)), [self._grad_var,]) ] with tf.control_dependencies(assert_array): p = self._dist_to_opt_avg**2 * self._h_min**2 / 2 / self._grad_var w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0 w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0/3.0) y = w - p / 3.0 / w x = y + 1 return x
def multilayer_perceptron(x): fc1 = layers.fully_connected(x, 256, activation_fn=tf.nn.relu, scope='fc1') fc2 = layers.fully_connected(fc1, 256, activation_fn=tf.nn.relu, scope='fc2') out = layers.fully_connected(fc2, 10, activation_fn=None, scope='out') tf.add_to_collection('Asserts', tf.Assert(tf.reduce_all(out > 0), [out], name='assert_out_positive')) # (*) return out # build model, loss, and train op
def multilayer_perceptron(x): fc1 = layers.fully_connected(x, 256, activation_fn=tf.nn.relu, scope='fc1') fc2 = layers.fully_connected(fc1, 256, activation_fn=tf.nn.relu, scope='fc2') out = layers.fully_connected(fc2, 10, activation_fn=None, scope='out') tf.Assert(out > 0, [out], name='assert_out_positive') return out # build model, loss, and train op
def multilayer_perceptron(x): fc1 = layers.fully_connected(x, 256, activation_fn=tf.nn.relu, scope='fc1') fc2 = layers.fully_connected(fc1, 256, activation_fn=tf.nn.relu, scope='fc2') out = layers.fully_connected(fc2, 10, activation_fn=None, scope='out') assert_op = tf.Assert(tf.reduce_all(out > 0), [out], name='assert_out_positive') #out = tf.with_dependencies([assert_op], out) with tf.control_dependencies([assert_op]): out = tf.identity(out, name='out') return out # build model, loss, and train op
def _mapper(self, grad, var): # this is very slow... #op = tf.Assert(tf.reduce_all(tf.is_finite(var)), [var], summarize=100) grad = tf.check_numerics(grad, 'CheckGradient') return grad
def to_normalized_coordinates(keypoints, height, width, check_range=True, scope=None): """Converts absolute keypoint coordinates to normalized coordinates in [0, 1]. Usually one uses the dynamic shape of the image or conv-layer tensor: keypoints = keypoint_ops.to_normalized_coordinates(keypoints, tf.shape(images)[1], tf.shape(images)[2]), This function raises an assertion failed error at graph execution time when the maximum coordinate is smaller than 1.01 (which means that coordinates are already normalized). The value 1.01 is to deal with small rounding errors. Args: keypoints: A tensor of shape [num_instances, num_keypoints, 2]. height: Maximum value for y coordinate of absolute keypoint coordinates. width: Maximum value for x coordinate of absolute keypoint coordinates. check_range: If True, checks if the coordinates are normalized. scope: name scope. Returns: tensor of shape [num_instances, num_keypoints, 2] with normalized coordinates in [0, 1]. """ with tf.name_scope(scope, 'ToNormalizedCoordinates'): height = tf.cast(height, tf.float32) width = tf.cast(width, tf.float32) if check_range: max_val = tf.reduce_max(keypoints) max_assert = tf.Assert(tf.greater(max_val, 1.01), ['max value is lower than 1.01: ', max_val]) with tf.control_dependencies([max_assert]): width = tf.identity(width) return scale(keypoints, 1.0 / height, 1.0 / width)
def to_absolute_coordinates(keypoints, height, width, check_range=True, scope=None): """Converts normalized keypoint coordinates to absolute pixel coordinates. This function raises an assertion failed error when the maximum keypoint coordinate value is larger than 1.01 (in which case coordinates are already absolute). Args: keypoints: A tensor of shape [num_instances, num_keypoints, 2] height: Maximum value for y coordinate of absolute keypoint coordinates. width: Maximum value for x coordinate of absolute keypoint coordinates. check_range: If True, checks if the coordinates are normalized or not. scope: name scope. Returns: tensor of shape [num_instances, num_keypoints, 2] with absolute coordinates in terms of the image size. """ with tf.name_scope(scope, 'ToAbsoluteCoordinates'): height = tf.cast(height, tf.float32) width = tf.cast(width, tf.float32) # Ensure range of input keypoints is correct. if check_range: max_val = tf.reduce_max(keypoints) max_assert = tf.Assert(tf.greater_equal(1.01, max_val), ['maximum keypoint coordinate value is larger ' 'than 1.01: ', max_val]) with tf.control_dependencies([max_assert]): width = tf.identity(width) return scale(keypoints, height, width)
def sort_by_field(boxlist, field, order=SortOrder.descend, scope=None): """Sort boxes and associated fields according to a scalar field. A common use case is reordering the boxes according to descending scores. Args: boxlist: BoxList holding N boxes. field: A BoxList field for sorting and reordering the BoxList. order: (Optional) descend or ascend. Default is descend. scope: name scope. Returns: sorted_boxlist: A sorted BoxList with the field in the specified order. Raises: ValueError: if specified field does not exist ValueError: if the order is not either descend or ascend """ with tf.name_scope(scope, 'SortByField'): if order != SortOrder.descend and order != SortOrder.ascend: raise ValueError('Invalid sort order') field_to_sort = boxlist.get_field(field) if len(field_to_sort.shape.as_list()) != 1: raise ValueError('Field should have rank 1') num_boxes = boxlist.num_boxes() num_entries = tf.size(field_to_sort) length_assert = tf.Assert( tf.equal(num_boxes, num_entries), ['Incorrect field size: actual vs expected.', num_entries, num_boxes]) with tf.control_dependencies([length_assert]): # TODO: Remove with tf.device when top_k operation runs correctly on GPU. with tf.device('/cpu:0'): _, sorted_indices = tf.nn.top_k(field_to_sort, num_boxes, sorted=True) if order == SortOrder.ascend: sorted_indices = tf.reverse_v2(sorted_indices, [0]) return gather(boxlist, sorted_indices)
def to_normalized_coordinates(boxlist, height, width, check_range=True, scope=None): """Converts absolute box coordinates to normalized coordinates in [0, 1]. Usually one uses the dynamic shape of the image or conv-layer tensor: boxlist = box_list_ops.to_normalized_coordinates(boxlist, tf.shape(images)[1], tf.shape(images)[2]), This function raises an assertion failed error at graph execution time when the maximum coordinate is smaller than 1.01 (which means that coordinates are already normalized). The value 1.01 is to deal with small rounding errors. Args: boxlist: BoxList with coordinates in terms of pixel-locations. height: Maximum value for height of absolute box coordinates. width: Maximum value for width of absolute box coordinates. check_range: If True, checks if the coordinates are normalized or not. scope: name scope. Returns: boxlist with normalized coordinates in [0, 1]. """ with tf.name_scope(scope, 'ToNormalizedCoordinates'): height = tf.cast(height, tf.float32) width = tf.cast(width, tf.float32) if check_range: max_val = tf.reduce_max(boxlist.get()) max_assert = tf.Assert(tf.greater(max_val, 1.01), ['max value is lower than 1.01: ', max_val]) with tf.control_dependencies([max_assert]): width = tf.identity(width) return scale(boxlist, 1 / height, 1 / width)
def to_absolute_coordinates(boxlist, height, width, check_range=True, scope=None): """Converts normalized box coordinates to absolute pixel coordinates. This function raises an assertion failed error when the maximum box coordinate value is larger than 1.01 (in which case coordinates are already absolute). Args: boxlist: BoxList with coordinates in range [0, 1]. height: Maximum value for height of absolute box coordinates. width: Maximum value for width of absolute box coordinates. check_range: If True, checks if the coordinates are normalized or not. scope: name scope. Returns: boxlist with absolute coordinates in terms of the image size. """ with tf.name_scope(scope, 'ToAbsoluteCoordinates'): height = tf.cast(height, tf.float32) width = tf.cast(width, tf.float32) # Ensure range of input boxes is correct. if check_range: box_maximum = tf.reduce_max(boxlist.get()) max_assert = tf.Assert(tf.greater_equal(1.01, box_maximum), ['maximum box coordinate value is larger ' 'than 1.01: ', box_maximum]) with tf.control_dependencies([max_assert]): width = tf.identity(width) return scale(boxlist, height, width)
def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs.get_shape().assert_has_rank(4) shape_assert = tf.Assert( tf.logical_and(tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33), tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)), ['image size must at least be 33 in both height and width.']) feature_map_layout = { 'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256, 128], } with tf.control_dependencies([shape_assert]): with slim.arg_scope(self._conv_hyperparams): with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: _, image_features = mobilenet_v1.mobilenet_v1_base( preprocessed_inputs, final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, scope=scope) feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()