Python tensorflow 模块,negative() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.negative()

项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss_distill_boost(self, predictions, labels_distill, labels, **unused_params):
    with tf.name_scope("loss_distill_boost"):
      print("loss_distill_boost")
      epsilon = 10e-6
      float_labels = tf.cast(labels, tf.float32)
      batch_size = tf.shape(float_labels)[0]
      float_labels_distill = tf.cast(labels_distill, tf.float32)
      error = tf.negative(float_labels * tf.log(float_labels_distill + epsilon) + (
          1 - float_labels) * tf.log(1 - float_labels_distill + epsilon))
      error = tf.reduce_sum(error,axis=1,keep_dims=True)
      alpha = error / tf.reduce_sum(error) * tf.cast(batch_size,dtype=tf.float32)
      alpha = tf.clip_by_value(alpha, 0.5, 5)
      alpha = alpha / tf.reduce_sum(alpha) * tf.cast(batch_size,dtype=tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss * alpha)

      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss_distill_relabel(self, predictions, labels_distill, labels, **unused_params):
    with tf.name_scope("loss_distill_relabel"):
      print("loss_distill_relabel")
      epsilon = 10e-6
      float_labels = tf.cast(labels, tf.float32)
      sum_labels = tf.cast(tf.reduce_sum(float_labels),dtype=tf.int32)
      pos_distill, _ = tf.nn.top_k(tf.reshape(labels_distill,[-1]), k=sum_labels)
      labels_true = tf.ones(tf.shape(labels))
      labels_false = tf.zeros(tf.shape(labels))
      labels_add = tf.where(tf.greater_equal(labels_distill, pos_distill[-1]), labels_true, labels_false)
      print(labels_add.get_shape().as_list())
      float_labels = float_labels+labels_add*(1.0-float_labels)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)

      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      vocab_size = predictions.get_shape().as_list()[1]
      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      neg_labels = 1 - float_labels
      predictions_pos = predictions*float_labels+10*neg_labels
      predictions_minpos = tf.reduce_min(predictions_pos,axis=1,keep_dims=True)
      predictions_neg = predictions*neg_labels-10*float_labels
      predictions_maxneg = tf.reduce_max(predictions_neg,axis=1,keep_dims=True)
      mask_1 = tf.cast(tf.greater_equal(predictions_neg, predictions_minpos),dtype=tf.float32)
      mask_2 = tf.cast(tf.less_equal(predictions_pos, predictions_maxneg),dtype=tf.float32)
      cross_entropy_loss = cross_entropy_loss*(mask_1+mask_2)*10 + cross_entropy_loss
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
        bound = FLAGS.softmax_bound
        vocab_size_1 = bound
        with tf.name_scope("loss_softmax"):
            epsilon = 10e-8
            float_labels = tf.cast(labels, tf.float32)
            labels_1 = float_labels[:,:vocab_size_1]
            predictions_1 = predictions[:,:vocab_size_1]
            cross_entropy_loss = CrossEntropyLoss().calculate_loss(predictions_1,labels_1)
            lables_2 = float_labels[:,vocab_size_1:]
            predictions_2 = predictions[:,vocab_size_1:]
            # l1 normalization (labels are no less than 0)
            label_rowsum = tf.maximum(
                tf.reduce_sum(lables_2, 1, keep_dims=True),
                epsilon)
            label_append = 1.0-tf.reduce_max(lables_2, 1, keep_dims=True)
            norm_float_labels = tf.concat((tf.div(lables_2, label_rowsum),label_append),axis=1)
            predictions_append = 1.0-tf.reduce_sum(predictions_2, 1, keep_dims=True)
            softmax_outputs = tf.concat((predictions_2,predictions_append),axis=1)
            softmax_loss = norm_float_labels * tf.log(softmax_outputs + epsilon) + (
                                                                                       1 - norm_float_labels) * tf.log(1 - softmax_outputs + epsilon)
            softmax_loss = tf.negative(tf.reduce_sum(softmax_loss, 1))
        return tf.reduce_mean(softmax_loss) + cross_entropy_loss
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, weights=None, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      if FLAGS.label_smoothing:
        float_labels = smoothing(labels)
      else:
        float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      if weights is not None:
        print cross_entropy_loss, weights
        weighted_loss = tf.einsum("ij,i->ij", cross_entropy_loss, weights)
        print "create weighted_loss", weighted_loss
        return tf.reduce_mean(tf.reduce_sum(weighted_loss, 1))
      else:
        return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, weights=None, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      if FLAGS.label_smoothing:
        float_labels = smoothing(labels)
      else:
        float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      if weights is not None:
        print cross_entropy_loss, weights
        weighted_loss = tf.einsum("ij,i->ij", cross_entropy_loss, weights)
        print "create weighted_loss", weighted_loss
        return tf.reduce_mean(tf.reduce_sum(weighted_loss, 1))
      else:
        return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:MatchingNetwork    作者:cnichkawde    | 项目源码 | 文件源码
def call(self,inputs):
        """
        inputs in as array which contains the support set the embeddings, the target embedding as the second last value in the array, and true class of target embedding as the last value in the array
        """ 
        similarities = []

        targetembedding = inputs[-2]
        numsupportset = len(inputs)-2
        for ii in range(numsupportset):
            supportembedding = inputs[ii]
            dd = tf.negative(tf.sqrt(tf.reduce_sum(tf.square(supportembedding-targetembedding),1,keep_dims=True)))

            similarities.append(dd)

        similarities = tf.concat(axis=1,values=similarities)
        softmax_similarities = tf.nn.softmax(similarities)
        preds = tf.squeeze(tf.matmul(tf.expand_dims(softmax_similarities,1),inputs[-1]))

        preds.set_shape((inputs[0].shape[0],self.nway))

        return preds
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_run_key_fn(self):
    p = plan.InferPlan()
    p.compiler = block_compiler.Compiler.create(
        blocks.Scalar() >> blocks.Function(tf.negative))
    p.logdir = self.get_temp_dir()
    p.examples = xrange(5)
    p.outputs = p.compiler.output_tensors
    results = []
    p.results_fn = results.append
    p.key_fn = str
    p.batch_size = 3
    p.chunk_size = 2
    with self.test_session() as sess:
      p.run(session=sess)
    self.assertEqual(1, len(results))
    self.assertEqual(
        [('0', (-0,)), ('1', (-1,)), ('2', (-2,)), ('3', (-3,)), ('4', (-4,))],
        list(results[0]))
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_function_otype_inference_tensor_to_tensor(self):
    infer = tdb._infer_tf_output_type_from_input_type

    self.assertEqual(tdt.TensorType([]),
                     infer(tf.negative, tdt.TensorType([])))
    self.assertEqual(tdt.TensorType([2, 3]),
                     infer(tf.negative, tdt.TensorType([2, 3])))

    self.assertEqual(tdt.TensorType([], 'int32'),
                     infer(tf.negative, tdt.TensorType([], 'int32')))
    self.assertEqual(tdt.TensorType([2, 3], 'int32'),
                     infer(tf.negative, tdt.TensorType([2, 3], 'int32')))

    f = lambda x: tf.cast(x, 'int32')
    self.assertEqual(tdt.TensorType([], 'int32'),
                     infer(f, tdt.TensorType([], 'float32')))
    self.assertEqual(tdt.TensorType([2, 3], 'int32'),
                     infer(f, tdt.TensorType([2, 3], 'float64')))
项目:zhusuan    作者:thu-ml    | 项目源码 | 文件源码
def testGetBackwardOpsSplit(self):
        # a -> b -> c
        #       \-> d
        a = tf.placeholder(tf.float32)
        b = tf.exp(a)
        c = tf.log(b)
        d = tf.negative(b)
        self.assertEqual(get_backward_ops([d]), [a.op, b.op, d.op])
        self.assertEqual(get_backward_ops([c]), [a.op, b.op, c.op])
        self.assertEqual(
            get_backward_ops([c, d]), [a.op, b.op, c.op, d.op])
        self.assertEqual(get_backward_ops([b, d]), [a.op, b.op, d.op])
        self.assertEqual(get_backward_ops([a, d]), [a.op, b.op, d.op])

        self.assertEqual(
            get_backward_ops([c, d], treat_as_inputs=[b]), [c.op, d.op])
        self.assertEqual(
            get_backward_ops([c], treat_as_inputs=[d]), [a.op, b.op, c.op])
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss_negative(self, predictions_pos, predictions_neg, labels, **unused_params):
    with tf.name_scope("loss_negative"):
      epsilon = 10e-6
      float_labels = tf.cast(labels, tf.float32)
      weight_pos = np.loadtxt(FLAGS.autoencoder_dir+"labels_uni.out")
      weight_pos = tf.reshape(tf.cast(weight_pos,dtype=tf.float32),[1,-1])
      weight_pos = tf.log(tf.reduce_max(weight_pos)/weight_pos)+1
      cross_entropy_loss_1 = float_labels * tf.log(predictions_pos + epsilon)*weight_pos + (
          1 - float_labels) * tf.log(1 - predictions_pos + epsilon)
      cross_entropy_loss_2 = (1-float_labels) * tf.log(predictions_neg + epsilon) + \
                             float_labels * tf.log(1 - predictions_neg + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss_1+cross_entropy_loss_2)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss_max(self, predictions, predictions_experts, labels, **unused_params):
    with tf.name_scope("loss_max"):
      epsilon = 10e-6
      shape = predictions_experts.get_shape().as_list()
      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
                        1 - float_labels) * tf.log(1 - predictions + epsilon)
      float_exprts = tf.tile(tf.reshape(float_labels,[-1,shape[1],1]),[1,1,shape[2]])
      cross_entropy_experts = float_exprts * tf.log(predictions_experts + epsilon) + (
                     1 - float_exprts) * tf.log(1 - predictions_experts + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      cross_entropy_experts = tf.negative(tf.reduce_mean(cross_entropy_experts,axis=2))
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1)) + tf.reduce_mean(tf.reduce_sum(cross_entropy_experts, 1))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
        with tf.name_scope("loss_xent"):
            epsilon = 10e-6
            origin_labels = tf.cast(labels, tf.float32)
            vocab_size = origin_labels.get_shape().as_list()[1]
            float_labels = tf.tile(tf.reshape(origin_labels,[-1, 1, vocab_size]),[1,FLAGS.top_k,1])
            float_labels = tf.reshape(float_labels,[-1,vocab_size])
            cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
                1 - float_labels) * tf.log(1 - predictions + epsilon)
            cross_entropy_loss = tf.negative(cross_entropy_loss)
            num_labels = tf.minimum(tf.reduce_sum(origin_labels,axis=1),tf.constant(FLAGS.top_k,dtype=tf.float32))
            mask = tf.reshape(tf.sequence_mask(num_labels,tf.constant(FLAGS.top_k,dtype=tf.float32),dtype=tf.float32),[-1])
            cross_entropy_loss = tf.reduce_sum(tf.reduce_sum(cross_entropy_loss, 1)*mask)/(tf.reduce_sum(mask)+epsilon)

            return cross_entropy_loss
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    false_positive_punishment = FLAGS.false_positive_punishment
    false_negative_punishment = FLAGS.false_negative_punishment
    with tf.name_scope("loss_xent_recall"):
      epsilon = 10e-6
      if FLAGS.label_smoothing:
        float_labels = smoothing(labels)
      else:
        float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = false_negative_punishment * float_labels * tf.log(predictions + epsilon) \
          + false_positive_punishment * ( 1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_softmax"):
      epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      # l1 normalization (labels are no less than 0)
      label_rowsum = tf.maximum(
          tf.reduce_sum(float_labels, 1, keep_dims=True),
          epsilon)
      norm_float_labels = tf.div(float_labels, label_rowsum)
      softmax_outputs = tf.nn.softmax(predictions)
      softmax_loss = tf.negative(tf.reduce_sum(
          tf.multiply(norm_float_labels, tf.log(softmax_outputs)), 1))
    return tf.reduce_mean(softmax_loss)
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, topk=20, **unused_params):
    with tf.name_scope("loss_xent_batch"):
      batch_agreement = FLAGS.batch_agreement
      epsilon = 10e-6
      float_batch_size = float(FLAGS.batch_size)

      topk_predictions, _ = tf.nn.top_k(predictions, k=20)
      min_topk_predictions = tf.reduce_min(topk_predictions, axis=1, keep_dims=True)
      topk_mask = tf.cast(predictions >= min_topk_predictions, dtype=tf.float32)

      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)

      # minimum positive predictions in topk
      positive_predictions = (predictions * float_labels * topk_mask) + 1.0 - (float_labels * topk_mask)
      min_pp = tf.reduce_min(positive_predictions)

      # maximum negative predictions
      negative_predictions = predictions * (1.0 - float_labels)
      max_np = tf.reduce_max(negative_predictions)

      # 1s that fall under top-k
      false_negatives = tf.cast(predictions < min_topk_predictions, tf.float32) * float_labels
      # 0s that grow over 1s in top-k
      false_positives = tf.cast(predictions > min_pp, tf.float32) * (1.0 - float_labels) * topk_mask

      weight = (false_negatives + false_positives) * batch_agreement + 1.0
      weight = tf.stop_gradient(weight)
      print weight
      return tf.reduce_mean(tf.reduce_sum(weight * cross_entropy_loss, 1))
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_softmax"):
      epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      # l1 normalization (labels are no less than 0)
      label_rowsum = tf.maximum(
          tf.reduce_sum(float_labels, 1, keep_dims=True),
          epsilon)
      norm_float_labels = tf.div(float_labels, label_rowsum)
      softmax_outputs = tf.nn.softmax(predictions)
      softmax_loss = tf.negative(tf.reduce_sum(
          tf.multiply(norm_float_labels, tf.log(softmax_outputs)), 1))
    return tf.reduce_mean(softmax_loss)
项目:MatchingNetwork    作者:cnichkawde    | 项目源码 | 文件源码
def _merge_function(self,inputs):
        return tf.negative(tf.abs(inputs[0]-inputs[1]))
项目:yt8m    作者:forwchen    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:yt8m    作者:forwchen    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_softmax"):
      epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      # l1 normalization (labels are no less than 0)
      label_rowsum = tf.maximum(
          tf.reduce_sum(float_labels, 1, keep_dims=True),
          epsilon)
      norm_float_labels = tf.div(float_labels, label_rowsum)
      softmax_outputs = tf.nn.softmax(predictions)
      softmax_loss = tf.negative(tf.reduce_sum(
          tf.multiply(norm_float_labels, tf.log(softmax_outputs)), 1))
    return tf.reduce_mean(softmax_loss)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_run_no_key_fn(self):
    p = plan.InferPlan()
    p.compiler = block_compiler.Compiler.create(
        blocks.Scalar() >> blocks.Function(tf.negative))
    p.logdir = self.get_temp_dir()
    p.examples = xrange(5)
    p.outputs = p.compiler.output_tensors
    results = []
    p.results_fn = results.append
    p.batch_size = 3
    p.chunk_size = 2
    with self.test_session() as sess:
      p.run(session=sess)
    self.assertEqual(1, len(results))
    self.assertEqual([(0,), (-1,), (-2,), (-3,), (-4,)], list(results[0]))
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_composition_void(self):
    c = tdb.Composition()
    with c.scope():
      a = tdb.Scalar().reads(c.input)
      b = tdb.Function(tf.negative).reads(a)
      tdm.Metric('foo').reads(b)
      c.output.reads(a)
    self.assertBuilds((42., {'foo': [-42.]}), c, 42, max_depth=2)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_composition_forward_type_inference(self):
    b = tdb._pipe([tdb.Identity(), tdb.Identity(),
                   tdb.Map(tdb.Function(tf.negative))])
    six.assertRaisesRegex(
        self, TypeError, 'bad input type PyObjectType',
        b.input.set_input_type, tdt.PyObjectType())
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_forward_declaration_orphaned_nested(self):
    fwd1 = tdb.ForwardDeclaration(tdt.VoidType(), tdt.TensorType([]))
    fwd2 = tdb.ForwardDeclaration(tdt.SequenceType(tdt.TensorType([])),
                                  tdt.TensorType([]))
    b = tdb.Map(tdb.Scalar()) >> fwd2() >> tdb.Function(tf.negative)
    fwd2.resolve_to(tdb.Fold(tdb.Function(tf.add), fwd1()))
    fwd1.resolve_to(tdb.FromTensor(tf.ones([])))
    self.assertBuilds(-8., b, [3, 4], max_depth=3)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_map_tuple(self):
    block = (tdb.Scalar(), tdb.Scalar()) >> tdb.Map(tdb.Function(tf.negative))
    self.assertBuilds([-3., -4.], block, (3, 4))
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_all_of_1(self):
    self.assertBuilds((3.,), scalar_all_of(tf.negative), -3)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_all_of_3(self):
    block = scalar_all_of(tf.identity, tf.abs, tf.negative)
    self.assertBuilds((3., 3., -3.), block, 3)
    self.assertBuilds((-3., 3., 3.), block, -3)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_all_of_different_shapes(self):
    block = scalar_all_of(tf.negative, functools.partial(tf.expand_dims, dim=1))
    self.assertBuilds((-3., [3.]), block, 3)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_tuple_of_seq(self):
    block = tdb.AllOf(
        tdb.Map(tdb.Scalar() >> tdb.Function(tf.negative)),
        tdb.Map(tdb.Scalar() >> tdb.Function(tf.identity)))
    self.assertBuilds(([], []), block, [], max_depth=0)
    self.assertBuilds(([-1., -2.], [1., 2.]), block, [1, 2])
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_input_transform(self):
    block = tdb.Map(tdb.InputTransform(lambda x: 1 + ord(x) - ord('a')) >>
                    tdb.Scalar('int32') >> tdb.Function(tf.negative))
    self.assertBuilds([-1, -2, -3, -4], block, 'abcd')
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_one_of(self):
    block = tdb.OneOf(lambda x: x > 0,
                      {True: tdb.Scalar(),
                       False: tdb.Scalar() >> tdb.Function(tf.negative)})
    self.assertBuildsConst(3., block, 3)
    self.assertBuildsConst(3., block, -3)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_one_of_mixed_input_type(self):
    block = (tdb.Identity(), tdb.Scalar('int32')) >> tdb.OneOf(
        key_fn=tdb.GetItem(0),
        case_blocks=(tdb.Function(tf.square), tdb.Function(tf.negative)),
        pre_block=tdb.GetItem(1))
    self.assertBuilds(4, block, (0, 2))
    self.assertBuilds(-2, block, (1, 2))
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_optional_default_none_type_inference(self):
    child = tdb.Scalar() >> tdb.Function(tf.negative)
    block = tdb.Optional(child)
    self.assertEqual(child.output_type, None)
    child.set_output_type([])
    self.assertEqual(block.output_type, tdt.TensorType([]))
项目:mlc2017-online    作者:machine-learning-challenge    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:mlc2017-online    作者:machine-learning-challenge    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_softmax"):
      epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      # l1 normalization (labels are no less than 0)
      label_rowsum = tf.maximum(
          tf.reduce_sum(float_labels, 1, keep_dims=True),
          epsilon)
      norm_float_labels = tf.div(float_labels, label_rowsum)
      softmax_outputs = tf.nn.softmax(predictions)
      softmax_loss = tf.negative(tf.reduce_sum(
          tf.multiply(norm_float_labels, tf.log(softmax_outputs)), 1))
    return tf.reduce_mean(softmax_loss)
项目:youtube-8m    作者:google    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:youtube-8m    作者:google    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_softmax"):
      epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      # l1 normalization (labels are no less than 0)
      label_rowsum = tf.maximum(
          tf.reduce_sum(float_labels, 1, keep_dims=True),
          epsilon)
      norm_float_labels = tf.div(float_labels, label_rowsum)
      softmax_outputs = tf.nn.softmax(predictions)
      softmax_loss = tf.negative(tf.reduce_sum(
          tf.multiply(norm_float_labels, tf.log(softmax_outputs)), 1))
    return tf.reduce_mean(softmax_loss)
项目:Video-Classification    作者:boyaolin    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:Video-Classification    作者:boyaolin    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_softmax"):
      epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      # l1 normalization (labels are no less than 0)
      label_rowsum = tf.maximum(
          tf.reduce_sum(float_labels, 1, keep_dims=True),
          epsilon)
      norm_float_labels = tf.div(float_labels, label_rowsum)
      softmax_outputs = tf.nn.softmax(predictions)
      softmax_loss = tf.negative(tf.reduce_sum(
          tf.multiply(norm_float_labels, tf.log(softmax_outputs)), 1))
    return tf.reduce_mean(softmax_loss)
项目:zhusuan    作者:thu-ml    | 项目源码 | 文件源码
def __neg__(self):
        return tf.negative(self)
项目:Youtube-8M-WILLOW    作者:antoine77340    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      alpha = FLAGS.alpha

      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = 2*(alpha*float_labels * tf.log(predictions + epsilon) + (1-alpha)*(
          1 - float_labels) * tf.log(1 - predictions + epsilon))
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:tensorflow-forward-ad    作者:renmengye    | 项目源码 | 文件源码
def Neg_FwGrad(op, dx, _op_table=None, _grad_table=None):
  if dx is None:
    return None
  return tf.negative(dx)
项目:tensorflow-forward-ad    作者:renmengye    | 项目源码 | 文件源码
def test_basic(self):
    with tf.Graph().as_default(), self.test_session() as sess:
      rnd = np.random.RandomState(0)
      x = self.get_random_tensor([18, 12], rnd=rnd)
      y = tf.negative(x)
      self.assert_bw_fw(sess, x, y, rnd=rnd)
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_softmax"):
      epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      # l1 normalization (labels are no less than 0)
      label_rowsum = tf.maximum(
          tf.reduce_sum(float_labels, 1, keep_dims=True),
          epsilon)
      norm_float_labels = tf.div(float_labels, label_rowsum)
      softmax_outputs = tf.nn.softmax(predictions)
      softmax_loss = tf.negative(tf.reduce_sum(
          tf.multiply(norm_float_labels, tf.log(softmax_outputs)), 1))
    return tf.reduce_mean(softmax_loss)
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, epsilon, wgts, **unused_params):
    with tf.name_scope("loss_xent"):
      #epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss * wgts)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_softmax"):
      epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      # l1 normalization (labels are no less than 0)
      label_rowsum = tf.maximum(
          tf.reduce_sum(float_labels, 1, keep_dims=True),
          epsilon)
      norm_float_labels = tf.div(float_labels, label_rowsum)
      softmax_outputs = tf.nn.softmax(predictions)
      softmax_loss = tf.negative(tf.reduce_sum(
          tf.multiply(norm_float_labels, tf.log(softmax_outputs)), 1))
    return tf.reduce_mean(softmax_loss)
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def calculate_loss(self, predictions, labels, epsilon, **unused_params):
    with tf.name_scope("loss_xent"):
      #epsilon = 10e-8
      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
          1 - float_labels) * tf.log(1 - predictions + epsilon)
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
项目:FYP-AutoTextSum    作者:MrRexZ    | 项目源码 | 文件源码
def _window(region, start_index, end_index):
    """
    Returns the list of words starting from `start_index`, going to `end_index`
    taken from region. If `start_index` is a negative number, or if `end_index`
    is greater than the index of the last word in region, this function will pad
    its return value with `NULL_WORD`.
    """
    last_index = len(region) + 1
    selected_tokens = region[max(start_index, 0):min(end_index, last_index) + 1]
    return selected_tokens
项目:complex_tf    作者:woodshop    | 项目源码 | 文件源码
def testCplxNegGPU(self):
        shapes = [(5,4,3), (5,4), (5,), (1,)]
        for sh in shapes:
            x = ((np.random.randn(*sh) +
                  1j*np.random.randn(*sh)).astype(np.complex64))
            self._compareGpu(x, np.negative, tf.negative)