Python tensorflow 模块,parse_example() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.parse_example()

项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):

    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:yt8m    作者:forwchen    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:cloudml-samples    作者:GoogleCloudPlatform    | 项目源码 | 文件源码
def example_serving_input_fn(default_batch_size=None):
  """Build the serving inputs.

  Args:
    default_batch_size (int): Batch size for the tf.placeholder shape
  """
  feature_spec = {}
  for feat in CONTINUOUS_COLS:
    feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.int64)

  for feat, _ in CATEGORICAL_COLS:
    feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.string)

  example_bytestring = tf.placeholder(
      shape=[default_batch_size],
      dtype=tf.string,
  )
  features = tf.parse_example(example_bytestring, feature_spec)
  return features, {'example': example_bytestring}
项目:cloudml-samples    作者:GoogleCloudPlatform    | 项目源码 | 文件源码
def example_serving_input_fn():
  """Build the serving inputs."""
  example_bytestring = tf.placeholder(
      shape=[None],
      dtype=tf.string,
  )
  feature_scalars = tf.parse_example(
      example_bytestring,
      tf.feature_column.make_parse_example_spec(INPUT_COLUMNS)
  )
  return tf.estimator.export.ServingInputReceiver(
      features,
      {'example_proto': example_bytestring}
  )

# [START serving-function]
项目:youtube-8m    作者:google    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:Video-Classification    作者:boyaolin    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:Youtube-8M-WILLOW    作者:antoine77340    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)

    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:Youtube8mdataset_kagglechallenge    作者:jasonlee27    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:ChessAI    作者:SamRagusa    | 项目源码 | 文件源码
def serving_input_receiver_fn():
    """
    A function to use for input processing when serving the model.

    NOTES:
    1) This should still work, but I haven't tested it since using I think TensorFlow 1.2.1
    """
    feature_spec = {'str': tf.FixedLenFeature([1], tf.string)}
    serialized_tf_example = tf.placeholder(dtype=tf.string, name='input_example_tensor')

    receiver_tensors = {'example': serialized_tf_example}

    features = tf.parse_example(serialized_tf_example, feature_spec)

    # I could probably not do this and handle the data better within the graph
    features['str'] = tf.reshape(features['str'], [-1])

    data = full_onehot_process_line_as_2d_input(features['str'])

    return tf.estimator.export.ServingInputReceiver(data, receiver_tensors)
项目:youtube    作者:taufikxu    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:kaggle-youtube-8m    作者:liufuyang    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)

    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:kaggle-youtube-8m    作者:liufuyang    | 项目源码 | 文件源码
def example_serving_input_fn(default_batch_size=None):
  """Build the serving inputs.

  Args:
    default_batch_size (int): Batch size for the tf.placeholder shape
  """
  feature_spec = {}
  for feat in CONTINUOUS_COLS:
    feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.float32)

  for feat, _ in CATEGORICAL_COLS:
    feature_spec[feat] = tf.FixedLenFeature(shape=[], dtype=tf.string)

  example_bytestring = tf.placeholder(
      shape=[default_batch_size],
      dtype=tf.string,
  )
  feature_scalars = tf.parse_example(example_bytestring, feature_spec)
  features = {
      key: tf.expand_dims(tensor, -1)
      for key, tensor in feature_scalars.iteritems()
  }
  return features, {'example': example_bytestring}
项目:kaggle-youtube-8m    作者:liufuyang    | 项目源码 | 文件源码
def get_placeholder_input_fn(config, model_type, vocab_sizes, use_crosses):
  """Wrap the get input features function to provide the metadata."""

  def get_input_features():
    """Read the input features from the given placeholder."""
    columns = feature_columns(config, model_type, vocab_sizes, use_crosses)
    feature_spec = tf.contrib.layers.create_feature_spec_for_parsing(columns)

    # Add a dense feature for the keys, use '' if not on the tf.Example proto.
    feature_spec[KEY_FEATURE_COLUMN] = tf.FixedLenFeature(
        [1], dtype=tf.string, default_value='')

    # Add a placeholder for the serialized tf.Example proto input.
    examples = tf.placeholder(tf.string, shape=(None,))

    features = tf.parse_example(examples, feature_spec)
    # Pass the input tensor so it can be used for export.
    features[EXAMPLES_PLACEHOLDER_KEY] = examples
    return features, None

  # Return a function to input the feaures into the model from a placeholder.
  return get_input_features
项目:EasySparse    作者:physicso    | 项目源码 | 文件源码
def read_and_decode_batch(filename_queue, batch_size, capacity, min_after_dequeue):
    """Dequeue a batch of data from the TFRecord.
    Args:
    filename_queue: Filename Queue of the TFRecord.
    batch_size: How many records dequeued each time.
    capacity: The capacity of the queue.
    min_after_dequeue: Ensures a minimum amount of shuffling of examples.
    Returns:
     List of the dequeued (batch_label, batch_ids, batch_values).
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    batch_serialized_example = tf.train.shuffle_batch([serialized_example], 
        batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue)
    # The feature definition here should BE consistent with LibSVM TO TFRecord process.
    features = tf.parse_example(batch_serialized_example,
                                       features={
                                           "label": tf.FixedLenFeature([], tf.float32),
                                           "ids": tf.VarLenFeature(tf.int64),
                                           "values": tf.VarLenFeature(tf.float32)
                                       })
    batch_label = features["label"]
    batch_ids = features["ids"]
    batch_values = features["values"]
    return batch_label, batch_ids, batch_values
项目:tutorial_mnist    作者:machine-learning-challenge    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    feature_map = {
        'image_raw': tf.FixedLenFeature([784], tf.int64),
        'label': tf.FixedLenFeature([], tf.int64),
    }
    features = tf.parse_example(serialized_examples, features=feature_map)

    images = tf.cast(features["image_raw"], tf.float32) * (1. / 255)
    labels = tf.cast(features['label'], tf.int32)

    def dense_to_one_hot(label_batch, num_classes):
      one_hot = tf.map_fn(lambda x : tf.cast(slim.one_hot_encoding(x, num_classes), tf.int32), label_batch)
      one_hot = tf.reshape(one_hot, [-1, num_classes])
      return one_hot

    labels = dense_to_one_hot(labels, 10)
    return images, labels
项目:u8m_test    作者:hxkk    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:scalable_analytics    作者:broadinstitute    | 项目源码 | 文件源码
def _predict_input_fn():
  """Supplies the input to the model.

  Returns:
    A tuple consisting of 1) a dictionary of tensors whose keys are
    the feature names, and 2) a tensor of target labels which for
    clustering must be 'None'.
  """

  # Add a placeholder for the serialized tf.Example proto input.
  examples = tf.placeholder(tf.string, shape=(None,), name="examples")

  raw_features = tf.parse_example(examples, _get_feature_columns())

  dense = _raw_features_to_dense_tensor(raw_features)

  return input_fn_utils.InputFnOps(
      features={DENSE_KEY: dense},
      labels=None,
      default_inputs={EXAMPLE_KEY: examples})
项目:youtube-8m    作者:Tsingularity    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:youtube-8m    作者:Tsingularity    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    ### Newly
    raw_labels = features["labels"]
    raw_coarse = tf.SparseTensor(indices = raw_labels.indices, values = tf.reshape(tf.gather(tf.constant(self.label_belongs, dtype = tf.int64), raw_labels.values), [-1]), dense_shape = raw_labels.dense_shape)
    coarse_labels = tf.sparse_to_indicator(raw_coarse, self.num_coarse_classes, name = 'coarse_transfer')
    coarse_labels.set_shape([None, self.num_coarse_classes])
    ###
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    # return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
    ### Newly
    return features["video_id"], concatenated_features, labels, coarse_labels, tf.ones([tf.shape(serialized_examples)[0]])
    ###
项目:youtube-8m    作者:Tsingularity    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:cloudml-examples    作者:googlegenomics    | 项目源码 | 文件源码
def _predict_input_fn():
  """Supplies the input to the model.

  Returns:
    A tuple consisting of 1) a dictionary of tensors whose keys are
    the feature names, and 2) a tensor of target labels if the mode
    is not INFER (and None, otherwise).
  """
  feature_spec = tf.contrib.layers.create_feature_spec_for_parsing(
      feature_columns=_get_feature_columns(include_target_column=False))

  feature_spec[FLAGS.id_field] = tf.FixedLenFeature([], dtype=tf.string)
  feature_spec[FLAGS.target_field + "_string"] = tf.FixedLenFeature(
      [], dtype=tf.string)

  # Add a placeholder for the serialized tf.Example proto input.
  examples = tf.placeholder(tf.string, shape=(None,), name="examples")

  features = tf.parse_example(examples, feature_spec)
  features[PREDICTION_KEY] = features[FLAGS.id_field]

  inputs = {PREDICTION_EXAMPLES: examples}

  return input_fn_utils.InputFnOps(
      features=features, labels=None, default_inputs=inputs)
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "predictions": tf.FixedLenFeature([self.num_classes], tf.float32),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]]), features["predictions"]
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
        """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

        Args:
          filename_queue: A tensorflow queue of filename locations.

        Returns:
          A tuple of video indexes, features, labels, and padding data.
        """
        reader = tf.TFRecordReader()
        _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

        # set the mapping from the fields to data types in the proto
        num_features = len(self.feature_names)
        assert num_features > 0, "self.feature_names is empty!"
        assert len(self.feature_names) == len(self.feature_sizes), \
            "length of feature_names (={}) != length of feature_sizes (={})".format( \
                len(self.feature_names), len(self.feature_sizes))

        feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                       "predictions": tf.FixedLenFeature([self.num_classes], tf.float32),
                       "labels": tf.VarLenFeature(tf.int64)}

        features = tf.parse_example(serialized_examples, features=feature_map)

        return features["predictions"]
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_writer(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def prepare_reader(self, filename_queue, batch_size=1024):
    """Creates a single reader thread for pre-aggregated YouTube 8M Examples.

    Args:
      filename_queue: A tensorflow queue of filename locations.

    Returns:
      A tuple of video indexes, features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
项目:tfutils    作者:neuroailab    | 项目源码 | 文件源码
def get_input_op(self, fq, parsers):
        reader = tf.TFRecordReader()
        _, serialized_data = reader.read_up_to(fq, self.batch_size)
        return tf.parse_example(serialized_data, parsers)
项目:cloudml-samples    作者:GoogleCloudPlatform    | 项目源码 | 文件源码
def example_serving_input_fn():
  """Build the serving inputs."""
  example_bytestring = tf.placeholder(
      shape=[None],
      dtype=tf.string,
  )
  features = tf.parse_example(
      example_bytestring,
      tf.feature_column.make_parse_example_spec(INPUT_COLUMNS)
  )
  return tf.estimator.export.ServingInputReceiver(
      features, {'example_proto': example_bytestring})
项目:cloudml-samples    作者:GoogleCloudPlatform    | 项目源码 | 文件源码
def build_prediction_graph(self):
    """Builds prediction graph and registers appropriate endpoints."""
    examples = tf.placeholder(tf.string, shape=(None,))
    features = {
        'image': tf.FixedLenFeature(
            shape=[IMAGE_PIXELS], dtype=tf.float32),
        'key': tf.FixedLenFeature(
            shape=[], dtype=tf.string),
    }

    parsed = tf.parse_example(examples, features)
    images = parsed['image']
    keys = parsed['key']

    # Build a Graph that computes predictions from the inference model.
    logits = inference(images, self.hidden1, self.hidden2)
    softmax = tf.nn.softmax(logits)
    prediction = tf.argmax(softmax, 1)

    # Mark the inputs and the outputs
    # Marking the input tensor with an alias with suffix _bytes. This is to
    # indicate that this tensor value is raw bytes and will be base64 encoded
    # over HTTP.
    # Note that any output tensor marked with an alias with suffix _bytes, shall
    # be base64 encoded in the HTTP response. To get the binary value, it
    # should be base64 decoded.
    tf.add_to_collection('inputs',
                         json.dumps({'examples_bytes': examples.name}))
    tf.add_to_collection('outputs',
                         json.dumps({
                             'key': keys.name,
                             'prediction': prediction.name,
                             'scores': softmax.name
                         }))
项目:cloudml-samples    作者:GoogleCloudPlatform    | 项目源码 | 文件源码
def parse_examples(examples):
  feature_map = {
      'labels': tf.FixedLenFeature(
          shape=[], dtype=tf.int64, default_value=[-1]),
      'images': tf.FixedLenFeature(
          shape=[IMAGE_PIXELS], dtype=tf.float32),
  }
  return tf.parse_example(examples, features=feature_map)
项目:cloudml-samples    作者:GoogleCloudPlatform    | 项目源码 | 文件源码
def parse_examples(examples):
  feature_map = {
      'labels':
          tf.FixedLenFeature(
              shape=[], dtype=tf.int64, default_value=[-1]),
      'images':
          tf.FixedLenFeature(
              shape=[IMAGE_PIXELS], dtype=tf.float32),
  }
  return tf.parse_example(examples, features=feature_map)
项目:mlc2017-online    作者:machine-learning-challenge    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples, width=50, height=50):
    # set the mapping from the fields to data types in the proto
    feature_map = {
           'image': tf.FixedLenFeature((), tf.string, default_value=''),
           'label': tf.FixedLenFeature([], tf.int64)
    }
    features = tf.parse_example(serialized_examples, features=feature_map)

    def decode_and_resize(image_str_tensor):
      """Decodes png string, resizes it and returns a uint8 tensor."""

      # Output a grayscale (channels=1) image
      image = tf.image.decode_png(image_str_tensor, channels=1)

      # Note resize expects a batch_size, but tf_map supresses that index,
      # thus we have to expand then squeeze.  Resize returns float32 in the
      # range [0, uint8_max]
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(
          image, [height, width], align_corners=False)
      image = tf.squeeze(image, squeeze_dims=[0])
      image = tf.cast(image, dtype=tf.uint8)
      return image

    images_str_tensor = features["image"]
    images = tf.map_fn(
        decode_and_resize, images_str_tensor, back_prop=False, dtype=tf.uint8)
    images = tf.image.convert_image_dtype(images, dtype=tf.float32)
    images = tf.subtract(images, 0.5)
    images = tf.multiply(images, 2.0)

    def dense_to_one_hot(label_batch, num_classes):
      one_hot = tf.map_fn(lambda x : tf.cast(slim.one_hot_encoding(x, num_classes), tf.int32), label_batch)
      one_hot = tf.reshape(one_hot, [-1, num_classes])
      return one_hot

    labels = tf.cast(features['label'], tf.int32)
    labels = dense_to_one_hot(labels, 10)

    return images, labels
项目:mlc2017-online    作者:machine-learning-challenge    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples, width=50, height=50):
    # set the mapping from the fields to data types in the proto
    feature_map = {
           'image': tf.FixedLenFeature((), tf.string, default_value=''),
           'image_id': tf.FixedLenFeature((), tf.string, default_value=''),
    }
    features = tf.parse_example(serialized_examples, features=feature_map)

    def decode_and_resize(image_str_tensor):
      """Decodes png string, resizes it and returns a uint8 tensor."""

      # Output a grayscale (channels=1) image
      image = tf.image.decode_png(image_str_tensor, channels=1)

      # Note resize expects a batch_size, but tf_map supresses that index,
      # thus we have to expand then squeeze.  Resize returns float32 in the
      # range [0, uint8_max]
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(
          image, [height, width], align_corners=False)
      image = tf.squeeze(image, squeeze_dims=[0])
      image = tf.cast(image, dtype=tf.uint8)
      return image

    images_str_tensor = features["image"]
    images = tf.map_fn(
        decode_and_resize, images_str_tensor, back_prop=False, dtype=tf.uint8)
    images = tf.image.convert_image_dtype(images, dtype=tf.float32)
    images = tf.subtract(images, 0.5)
    images = tf.multiply(images, 2.0)

    image_id = features["image_id"]
    return image_id, images
项目:mlc2017-online    作者:machine-learning-challenge    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples, width=32, height=32, channels=3):
    # set the mapping from the fields to data types in the proto
    feature_map = {
           'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
           'image/filename': tf.FixedLenFeature((), tf.string, default_value='')
    }
    features = tf.parse_example(serialized_examples, features=feature_map)


    def decode_and_resize(image_str_tensor):
      """Decodes jpeg string, resizes it and returns a uint8 tensor."""

      image = tf.image.decode_jpeg(image_str_tensor, channels=channels)

      # Note resize expects a batch_size, but tf_map supresses that index,
      # thus we have to expand then squeeze.  Resize returns float32 in the
      # range [0, uint8_max]
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(
          image, [height, width], align_corners=False)
      image = tf.squeeze(image, squeeze_dims=[0])
      image = tf.cast(image, dtype=tf.uint8)
      return image

    images_str_tensor = features["image/encoded"]
    images = tf.map_fn(
        decode_and_resize, images_str_tensor, back_prop=False, dtype=tf.uint8)
    images = tf.image.convert_image_dtype(images, dtype=tf.float32)
    images = tf.subtract(images, 0.5)
    images = tf.multiply(images, 2.0)


    image_ids = features['image/filename']

    return image_ids, images
项目:transform    作者:tensorflow    | 项目源码 | 文件源码
def from_feature_spec(feature_spec):
  """Convert a feature_spec to a Schema.

  Args:
    feature_spec: a features specification in the format expected by
        tf.parse_example(), i.e.
        `{name: FixedLenFeature(...), name: VarLenFeature(...), ...'

  Returns:
    A Schema representing the provided set of columns.
  """
  return Schema({
      key: _from_parse_feature(parse_feature)
      for key, parse_feature in six.iteritems(feature_spec)
  })
项目:tensorflow_mnist_cloudml    作者:mainyaa    | 项目源码 | 文件源码
def build_prediction_graph(self, export_dir):
    """Builds prediction graph and registers appropriate endpoints."""
    logging.info('Exporting prediction graph to %s', export_dir)
    examples = tf.placeholder(tf.string, shape=(None,))
    features = {
        'image': tf.FixedLenFeature(
            shape=[IMAGE_PIXELS], dtype=tf.float32),
        'key': tf.FixedLenFeature(
            shape=[], dtype=tf.string),
    }

    parsed = tf.parse_example(examples, features)
    images = parsed['image']
    keys = parsed['key']

    # Build a Graph that computes predictions from the inference model.
    logits = inference(images, self.hidden1, self.hidden2)
    softmax = tf.nn.softmax(logits)
    prediction = tf.argmax(softmax, 1)

    # Mark the inputs and the outputs
    # Marking the input tensor with an alias with suffix _bytes. This is to
    # indicate that this tensor value is raw bytes and will be base64 encoded
    # over HTTP.
    # Note that any output tensor marked with an alias with suffix _bytes, shall
    # be base64 encoded in the HTTP response. To get the binary value, it
    # should be base64 decoded.
    tf.add_to_collection('inputs',
                         json.dumps({'examples_bytes': examples.name}))
    tf.add_to_collection('outputs', json.dumps({
        'key': keys.name,
        'prediction': prediction.name,
        'scores': softmax.name
    }))
项目:tensorflow_mnist_cloudml    作者:mainyaa    | 项目源码 | 文件源码
def parse_examples(examples):
  feature_map = {
      'labels': tf.FixedLenFeature(
          shape=[], dtype=tf.int64, default_value=[-1]),
      'images': tf.FixedLenFeature(
          shape=[IMAGE_PIXELS], dtype=tf.float32),
  }
  return tf.parse_example(examples, features=feature_map)
项目:tensorflow_mnist_cloudml    作者:mainyaa    | 项目源码 | 文件源码
def build_prediction_graph(self, export_dir):
    """Builds prediction graph and registers appropriate endpoints."""
    logging.info('Exporting prediction graph to %s', export_dir)
    examples = tf.placeholder(tf.string, shape=(None,))
    features = {
        'image': tf.FixedLenFeature(
            shape=[IMAGE_PIXELS], dtype=tf.float32),
        'key': tf.FixedLenFeature(
            shape=[], dtype=tf.string),
    }

    parsed = tf.parse_example(examples, features)
    images = parsed['image']
    keys = parsed['key']

    # Build a Graph that computes predictions from the inference model.
    logits = inference(images, self.hidden1, self.hidden2)
    softmax = tf.nn.softmax(logits)
    prediction = tf.argmax(softmax, 1)

    # Mark the inputs and the outputs
    # Marking the input tensor with an alias with suffix _bytes. This is to
    # indicate that this tensor value is raw bytes and will be base64 encoded
    # over HTTP.
    # Note that any output tensor marked with an alias with suffix _bytes, shall
    # be base64 encoded in the HTTP response. To get the binary value, it
    # should be base64 decoded.
    tf.add_to_collection('inputs',
                         json.dumps({'examples_bytes': examples.name}))
    tf.add_to_collection('outputs', json.dumps({
        'key': keys.name,
        'prediction': prediction.name,
        'scores': softmax.name
    }))
项目:tensorflow_mnist_cloudml    作者:mainyaa    | 项目源码 | 文件源码
def parse_examples(examples):
  feature_map = {
      'labels': tf.FixedLenFeature(
          shape=[], dtype=tf.int64, default_value=[-1]),
      'images': tf.FixedLenFeature(
          shape=[IMAGE_PIXELS], dtype=tf.float32),
  }
  return tf.parse_example(examples, features=feature_map)
项目:tensorfx    作者:TensorLab    | 项目源码 | 文件源码
def parse_instances(self, instances, prediction=False):
    """Parses input instances according to the associated schema.

    Arguments:
      instances: The tensor containing input strings.
      prediction: Whether the instances are being parsed for producing predictions or not.
    Returns:
      A dictionary of tensors key'ed by field names.
    """
    # Convert the schema into an equivalent Example schema (expressed as features in Example
    # terminology).
    features = {}
    for field in self.schema:
      if field.type == SchemaFieldType.integer:
        dtype = tf.int64
        default_value = [0]
      elif field.type == SchemaFieldType.real:
        dtype = tf.float32
        default_value = [0.0]
      else:
        # discrete
        dtype = tf.string
        default_value = ['']

      if field.length == 0:
        feature = tf.VarLenFeature(dtype=dtype)
      else:
        if field.length != 1:
          default_value = default_value * field.length
        feature = tf.FixedLenFeature(shape=[field.length], dtype=dtype, default_value=default_value)

      features[field.name] = feature

    return tf.parse_example(instances, features, name='examples')
项目:google_ml_challenge    作者:SSUHan    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples, width=50, height=50):
    # set the mapping from the fields to data types in the proto
    feature_map = {
           'image': tf.FixedLenFeature((), tf.string, default_value=''),
           'label': tf.FixedLenFeature([], tf.int64)
    }
    features = tf.parse_example(serialized_examples, features=feature_map)

    def decode_and_resize(image_str_tensor):
      """Decodes png string, resizes it and returns a uint8 tensor."""

      # Output a grayscale (channels=1) image
      image = tf.image.decode_png(image_str_tensor, channels=1)

      # Note resize expects a batch_size, but tf_map supresses that index,
      # thus we have to expand then squeeze.  Resize returns float32 in the
      # range [0, uint8_max]
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(
          image, [height, width], align_corners=False)
      image = tf.squeeze(image, squeeze_dims=[0])
      image = tf.cast(image, dtype=tf.uint8)
      return image

    images_str_tensor = features["image"]
    images = tf.map_fn(
        decode_and_resize, images_str_tensor, back_prop=False, dtype=tf.uint8)
    images = tf.image.convert_image_dtype(images, dtype=tf.float32)
    images = tf.subtract(images, 0.5)
    images = tf.multiply(images, 2.0)

    def dense_to_one_hot(label_batch, num_classes):
      one_hot = tf.map_fn(lambda x : tf.cast(slim.one_hot_encoding(x, num_classes), tf.int32), label_batch)
      one_hot = tf.reshape(one_hot, [-1, num_classes])
      return one_hot

    labels = tf.cast(features['label'], tf.int32)
    labels = dense_to_one_hot(labels, 10)

    return images, labels
项目:google_ml_challenge    作者:SSUHan    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples, width=50, height=50):
    # set the mapping from the fields to data types in the proto
    feature_map = {
           'image': tf.FixedLenFeature((), tf.string, default_value=''),
           'image_id': tf.FixedLenFeature((), tf.string, default_value=''),
    }
    features = tf.parse_example(serialized_examples, features=feature_map)

    def decode_and_resize(image_str_tensor):
      """Decodes png string, resizes it and returns a uint8 tensor."""

      # Output a grayscale (channels=1) image
      image = tf.image.decode_png(image_str_tensor, channels=1)

      # Note resize expects a batch_size, but tf_map supresses that index,
      # thus we have to expand then squeeze.  Resize returns float32 in the
      # range [0, uint8_max]
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(
          image, [height, width], align_corners=False)
      image = tf.squeeze(image, squeeze_dims=[0])
      image = tf.cast(image, dtype=tf.uint8)
      return image

    images_str_tensor = features["image"]
    images = tf.map_fn(
        decode_and_resize, images_str_tensor, back_prop=False, dtype=tf.uint8)
    images = tf.image.convert_image_dtype(images, dtype=tf.float32)
    images = tf.subtract(images, 0.5)
    images = tf.multiply(images, 2.0)

    image_id = features["image_id"]
    return image_id, images
项目:google_ml_challenge    作者:SSUHan    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples, width=32, height=32, channels=3):
    # set the mapping from the fields to data types in the proto
    feature_map = {
           'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
           'image/filename': tf.FixedLenFeature((), tf.string, default_value='')
    }
    features = tf.parse_example(serialized_examples, features=feature_map)


    def decode_and_resize(image_str_tensor):
      """Decodes jpeg string, resizes it and returns a uint8 tensor."""

      image = tf.image.decode_jpeg(image_str_tensor, channels=channels)

      # Note resize expects a batch_size, but tf_map supresses that index,
      # thus we have to expand then squeeze.  Resize returns float32 in the
      # range [0, uint8_max]
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(
          image, [height, width], align_corners=False)
      image = tf.squeeze(image, squeeze_dims=[0])
      image = tf.cast(image, dtype=tf.uint8)
      return image

    images_str_tensor = features["image/encoded"]
    images = tf.map_fn(
        decode_and_resize, images_str_tensor, back_prop=False, dtype=tf.uint8)
    images = tf.image.convert_image_dtype(images, dtype=tf.float32)
    images = tf.subtract(images, 0.5)
    images = tf.multiply(images, 2.0)


    image_ids = features['image/filename']

    return image_ids, images
项目:kaggle-youtube-8m    作者:liufuyang    | 项目源码 | 文件源码
def build_prediction_graph(self):
    """Builds prediction graph and registers appropriate endpoints."""
    examples = tf.placeholder(tf.string, shape=(None,))
    features = {
        'image': tf.FixedLenFeature(
            shape=[IMAGE_PIXELS], dtype=tf.float32),
        'key': tf.FixedLenFeature(
            shape=[], dtype=tf.string),
    }

    parsed = tf.parse_example(examples, features)
    images = parsed['image']
    keys = parsed['key']

    # Build a Graph that computes predictions from the inference model.
    logits = inference(images, self.hidden1, self.hidden2)
    softmax = tf.nn.softmax(logits)
    prediction = tf.argmax(softmax, 1)

    # Mark the inputs and the outputs
    # Marking the input tensor with an alias with suffix _bytes. This is to
    # indicate that this tensor value is raw bytes and will be base64 encoded
    # over HTTP.
    # Note that any output tensor marked with an alias with suffix _bytes, shall
    # be base64 encoded in the HTTP response. To get the binary value, it
    # should be base64 decoded.
    tf.add_to_collection('inputs',
                         json.dumps({'examples_bytes': examples.name}))
    tf.add_to_collection('outputs',
                         json.dumps({
                             'key': keys.name,
                             'prediction': prediction.name,
                             'scores': softmax.name
                         }))
项目:kaggle-youtube-8m    作者:liufuyang    | 项目源码 | 文件源码
def parse_examples(examples):
  feature_map = {
      'labels': tf.FixedLenFeature(
          shape=[], dtype=tf.int64, default_value=[-1]),
      'images': tf.FixedLenFeature(
          shape=[IMAGE_PIXELS], dtype=tf.float32),
  }
  return tf.parse_example(examples, features=feature_map)
项目:kaggle-youtube-8m    作者:liufuyang    | 项目源码 | 文件源码
def parse_examples(examples):
  feature_map = {
      'labels':
          tf.FixedLenFeature(
              shape=[], dtype=tf.int64, default_value=[-1]),
      'images':
          tf.FixedLenFeature(
              shape=[IMAGE_PIXELS], dtype=tf.float32),
  }
  return tf.parse_example(examples, features=feature_map)
项目:vae-style-transfer    作者:sunsided    | 项目源码 | 文件源码
def import_images(tfrecord_file_names, max_reads=100, batch_size=50):
    with tf.variable_scope('import'):

        training_filename_queue = tf.train.string_input_producer(tfrecord_file_names, num_epochs=None)

        reader_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)
        reader = tf.TFRecordReader(options=reader_options)

        keys, values = reader.read_up_to(training_filename_queue, max_reads)
        features = tf.parse_example(
            values,
            features={
                'raw': tf.FixedLenFeature([], tf.string),
                'type': tf.FixedLenFeature([], tf.int64)
            })

        types = features['type']
        images = tf.decode_raw(features['raw'], tf.uint8)
        images = tf.reshape(images, shape=(-1, 180, 320, 3))
        images = tf.image.convert_image_dtype(images, dtype=tf.float32)

        image_batch, type_batch = tf.train.shuffle_batch(
            [images, types],
            enqueue_many=True,
            batch_size=batch_size,
            min_after_dequeue=batch_size,
            allow_smaller_final_batch=True,
            capacity=2000,
            name='shuffle_batch')

        return image_batch, type_batch
项目:tf-cnn-lstm-ocr-captcha    作者:Luonic    | 项目源码 | 文件源码
def parse_serialized_examples_batch(serialized_examples_batch, batch_size):
    feature_to_tensor = {
        'image': tf.FixedLenFeature([], tf.string),
        'height': tf.FixedLenFeature([1], tf.int64),
        'width': tf.FixedLenFeature([1], tf.int64),
        'label': tf.VarLenFeature(tf.int64),
        'label_length': tf.FixedLenFeature([1], tf.int64)
    }
    features = tf.parse_example(serialized_examples_batch, feature_to_tensor)

    class ocrRecord(object):
        pass

    result = ocrRecord()

    result.heights = tf.cast(features['height'], tf.int32)
    result.widths = tf.cast(features['width'], tf.int32)
    result.depth = 1

    # shape_1d = result.height * result.width * result.depth
    shape_1d = IMAGE_HEIGHT * IMAGE_WIDTH * IMAGE_DEPTH

    def decode_image_string(string):
        decoded_image = tf.decode_raw(string, tf.uint8)
        return tf.cast(decoded_image, tf.uint8)

    imgs_1d = tf.map_fn(decode_image_string, features['image'], dtype=tf.uint8,
                        back_prop=False, parallel_iterations=15)

    imgs_1d = tf.reshape(imgs_1d, [batch_size, shape_1d])
    imgs_1d.set_shape([batch_size, shape_1d])

    result.uint8images = tf.reshape(imgs_1d, [batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH])
    result.uint8images.set_shape([batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH])

    result.label_lengths = tf.cast(features['label_length'], tf.int32)
    result.label_lengths = tf.reshape(result.label_lengths, [batch_size])
    result.label_lengths.set_shape([batch_size])

    result.labels = tf.cast(features['label'], tf.int32)

    # Convert for timestep input
    result.uint8image = tf.transpose(result.uint8images, [0, 2, 1, 3])
    return result
项目:mlc2017-online    作者:machine-learning-challenge    | 项目源码 | 文件源码
def prepare_serialized_examples(self, serialized_examples, width=32, height=32, channels=3):
    # set the mapping from the fields to data types in the proto
    feature_map = {
           'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
           'image/filename': tf.FixedLenFeature((), tf.string, default_value=''),
           'image/class/label': tf.FixedLenFeature([], tf.int64)
    }
    features = tf.parse_example(serialized_examples, features=feature_map)


    def decode_and_resize(image_str_tensor):
      """Decodes jpeg string, resizes it and returns a uint8 tensor."""

      image = tf.image.decode_jpeg(image_str_tensor, channels=channels)

      # Note resize expects a batch_size, but tf_map supresses that index,
      # thus we have to expand then squeeze.  Resize returns float32 in the
      # range [0, uint8_max]
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(
          image, [height, width], align_corners=False)
      image = tf.squeeze(image, squeeze_dims=[0])
      image = tf.cast(image, dtype=tf.uint8)
      return image

    images_str_tensor = features["image/encoded"]
    images = tf.map_fn(
        decode_and_resize, images_str_tensor, back_prop=False, dtype=tf.uint8)
    images = tf.image.convert_image_dtype(images, dtype=tf.float32)
    images = tf.subtract(images, 0.5)
    images = tf.multiply(images, 2.0)

    def dense_to_one_hot(label_batch, num_classes):
      one_hot = tf.map_fn(lambda x : tf.cast(slim.one_hot_encoding(x, num_classes), tf.int32), label_batch)
      one_hot = tf.reshape(one_hot, [-1, num_classes])
      return one_hot

    labels = tf.cast(features['image/class/label'], tf.int32)
    labels = tf.reshape(labels, [-1, 1])


    image_ids = features['image/filename']

    return image_ids, images, labels