Python tensorflow 模块,strided_slice() 实例源码

我们从Python开源项目中,提取了以下36个代码示例,用于说明如何使用tensorflow.strided_slice()

项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data  = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)
        data_len  = tf.size(raw_data)
        batch_len = data_len // batch_size
        data      = tf.reshape(raw_data[0 : batch_size * batch_len],
                               [batch_size, batch_len])

        epoch_size = (batch_len - 1) // num_steps
        epoch_size = tf.identity(epoch_size, name="epoch_size")

        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()

        x = tf.strided_slice(data, [0, i * num_steps],
                             [batch_size, (i + 1) * num_steps],
                             #tf.ones_like([0, i * num_steps]))
                             [1,1])
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i * num_steps + 1],
                             [batch_size, (i + 1) * num_steps + 1],
                             #tf.ones_like([0, i * num_steps]))
                             [1,1])
        y.set_shape([batch_size, num_steps])
        return x, y
项目:holographic_memory    作者:jramapuram    | 项目源码 | 文件源码
def decode(self, memories, keys, num_keys=None):
        keys = self._normalize(keys)
        num_memories = memories.get_shape().as_list()
        num_memories[0] = self.num_models if num_memories[0] is None else num_memories[0]
        num_keys = keys.get_shape().as_list()[0] if num_keys is None else num_keys
        print 'decode: numkeys = ', num_keys, ' | num_memories = ', num_memories

        # re-gather keys to avoid mixing between different keys.
        perms = self.perm_keys(keys, self.perms, num_keys=num_keys)
        pshp = perms.get_shape().as_list()
        pshp[0] = num_keys*self.num_models if pshp[0] is None else pshp[0]
        pshp[1] = num_memories[1] if pshp[1] is None else pshp[1]
        permed_keys = tf.concat(0, [tf.strided_slice(perms, [i, 0], pshp, [num_keys, 1])
                                    for i in range(num_keys)])
        print 'memories = ', num_memories, \
            '| dec_perms =', permed_keys.get_shape().as_list()
        return self.conv_func(memories, permed_keys,
                              num_memories[0],
                              self.num_models,
                              num_keys=num_keys*self.num_models,
                              conj=True)
项目:Neural-Language-Model    作者:robosoup    | 项目源码 | 文件源码
def __init__(self, cfg, data, name):
        self.steps = ((len(data) // cfg.batch_size) - 1) // cfg.num_steps
        with tf.name_scope(name, values=[data, cfg.batch_size, cfg.num_steps]):
            raw_data = tf.convert_to_tensor(data)
            data_len = tf.size(raw_data)
            batch_len = data_len // cfg.batch_size
            data = tf.reshape(raw_data[0: cfg.batch_size * batch_len], [cfg.batch_size, batch_len])
            epoch_size = (batch_len - 1) // cfg.num_steps
            epoch_size = tf.identity(epoch_size, name="epoch_size")
            i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()

            begin_x = [0, i * cfg.num_steps]
            self.inputs = tf.strided_slice(
                data, begin_x, [cfg.batch_size, (i + 1) * cfg.num_steps], tf.ones_like(begin_x))
            self.inputs.set_shape([cfg.batch_size, cfg.num_steps])

            begin_y = [0, i * cfg.num_steps + 1]
            self.targets = tf.strided_slice(
                data, begin_y, [cfg.batch_size, (i + 1) * cfg.num_steps + 1], tf.ones_like(begin_y))
            self.targets.set_shape([cfg.batch_size, cfg.num_steps])
项目:PyTorchDemystified    作者:hhsecond    | 项目源码 | 文件源码
def process_decoder_input(target_data, target_vocab_to_int, batch_size):
    # Take off the last column
    sliced = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
    # Append a column filled with <GO>
    decoder_input = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), sliced], 1)
    return decoder_input
项目:tensorflow-forward-ad    作者:renmengye    | 项目源码 | 文件源码
def StridedSlice_FwGrad(op, dx, dy, dz, du, _op_table=None, _grad_table=None):
  if dx is None:
    return None
  y = op.inputs[1]
  z = op.inputs[2]
  u = op.inputs[3]
  return tf.strided_slice(dx, begin=y, end=z, strides=u)


###############################################################################
# Element-wise operators. elemwise.
###############################################################################
项目:language-translation-english-to-french    作者:Satyaki0924    | 项目源码 | 文件源码
def process_decoding_input(target_data, target_vocab_to_int, batch_size):
        l_word = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
        return tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), l_word], 1)
项目:tefla    作者:openAGI    | 项目源码 | 文件源码
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
    """Normalizes the given input across the specified dimension to unit length.
    Note that the rank of `input` must be known.

    Args:
        inputs: A `Tensor` of arbitrary size.
        dim: The dimension along which the input is normalized.
        epsilon: A small value to add to the inputs to avoid dividing by zero.
        scope: Optional scope for variable_scope.

    Returns:
        The normalized `Tensor`.

    Raises:
        ValueError: If dim is larger than the number of dimensions in 'inputs'.
    """
    with tf.variable_scope(scope, 'UnitNorm', [inputs]):
        if not inputs.get_shape():
            raise ValueError('The input rank must be known.')
        input_rank = len(inputs.get_shape().as_list())
        if dim < 0 or dim >= input_rank:
            raise ValueError(
                'dim must be positive but smaller than the input rank.')

        lengths = tf.sqrt(
            epsilon + tf.reduce_sum(tf.square(inputs), dim, True))
        multiples = []
        if dim > 0:
            multiples.append(tf.ones([dim], tf.int32))
        multiples.append(tf.strided_slice(
            tf.shape(inputs), [dim], [dim + 1], [1]))
        if dim < (input_rank - 1):
            multiples.append(tf.ones([input_rank - 1 - dim], tf.int32))
        multiples = tf.concat(multiples, 0)
        return tf.div(inputs, tf.tile(lengths, multiples))
项目:mcv-m5    作者:david-vazquez    | 项目源码 | 文件源码
def call(self, data, mask=None):
        tmp1 = tf.strided_slice(data,[0,0,0,0],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp2 = tf.strided_slice(data,[0,0,0,1],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp3 = tf.strided_slice(data,[0,0,1,0],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp4 = tf.strided_slice(data,[0,0,1,1],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        if int(tf.__version__[0]) < 1:
            return tf.concat(1,[tmp1, tmp2, tmp3, tmp4])
        else:
            return tf.concat([tmp1, tmp2, tmp3, tmp4],1)
项目:Tensorflow_Learn    作者:jiangweisuc    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
    """Iterate on the raw PTB data.
    This chunks up raw_data into batches of examples and returns Tensors that
    are drawn from these batches.
    Args:
      raw_data: one of the raw data outputs from ptb_raw_data.
      batch_size: int, the batch size.
      num_steps: int, the number of unrolls.
      name: the name of this operation (optional).
    Returns:
      A pair of Tensors, each shaped [batch_size, num_steps]. The second element
      of the tuple is the same data time-shifted to the right by one.
    Raises:
      tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
    """
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

        data_len = tf.size(raw_data)
        batch_len = data_len // batch_size
        data = tf.reshape(raw_data[0 : batch_size * batch_len],
                          [batch_size, batch_len])

        epoch_size = (batch_len - 1) // num_steps
        assertion = tf.assert_positive(
            epoch_size,
            message="epoch_size == 0, decrease batch_size or num_steps")
        with tf.control_dependencies([assertion]):
            epoch_size = tf.identity(epoch_size, name="epoch_size")

        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
        x = tf.strided_slice(data, [0, i * num_steps],
                             [batch_size, (i + 1) * num_steps])
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i * num_steps + 1],
                             [batch_size, (i + 1) * num_steps + 1])
        y.set_shape([batch_size, num_steps])
        return x, y
项目:keras_zoo    作者:david-vazquez    | 项目源码 | 文件源码
def call(self, data, mask=None):
        tmp1 = tf.strided_slice(data,[0,0,0,0],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp2 = tf.strided_slice(data,[0,0,0,1],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp3 = tf.strided_slice(data,[0,0,1,0],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        tmp4 = tf.strided_slice(data,[0,0,1,1],[1024,tf.to_int32(data.get_shape()[1]),tf.to_int32(data.get_shape()[2]),tf.to_int32(data.get_shape()[3])],[1,1,2,2])

        if int(tf.__version__[0]) < 1:
            return tf.concat(1,[tmp1, tmp2, tmp3, tmp4])
        else:
            return tf.concat([tmp1, tmp2, tmp3, tmp4],1)
项目:magenta    作者:tensorflow    | 项目源码 | 文件源码
def _crop(image, offset_height, offset_width, crop_height, crop_width):
  """Crops the given image using the provided offsets and sizes.

  Note that the method doesn't assume we know the input image size but it does
  assume we know the input image rank.

  Args:
    image: an image of shape [height, width, channels].
    offset_height: a scalar tensor indicating the height offset.
    offset_width: a scalar tensor indicating the width offset.
    crop_height: the height of the cropped image.
    crop_width: the width of the cropped image.

  Returns:
    the cropped (and resized) image.

  Raises:
    InvalidArgumentError: if the rank is not 3 or if the image dimensions are
      less than the crop size.
  """
  original_shape = tf.shape(image)

  rank_assertion = tf.Assert(
      tf.equal(tf.rank(image), 3),
      ['Rank of image must be equal to 3.'])
  with tf.control_dependencies([rank_assertion]):
    cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]])

  size_assertion = tf.Assert(
      tf.logical_and(
          tf.greater_equal(original_shape[0], crop_height),
          tf.greater_equal(original_shape[1], crop_width)),
      ['Crop size greater than the image size.'])

  offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0]))

  # Use tf.strided_slice instead of crop_to_bounding box as it accepts tensors
  # to define the crop size.
  with tf.control_dependencies([size_assertion]):
    image = tf.strided_slice(image, offsets, offsets + cropped_shape,
                             strides=tf.ones_like(offsets))
  return tf.reshape(image, cropped_shape)
项目:MatchPyramid-TensorFlow    作者:pl8787    | 项目源码 | 文件源码
def __init__(self, config):
        self.config = config
        tf.reset_default_graph()
        self.X1 = tf.placeholder(tf.int32, name='X1', shape=(None, config['data1_maxlen']))
        self.X2 = tf.placeholder(tf.int32, name='X2', shape=(None, config['data2_maxlen']))
        self.X1_len = tf.placeholder(tf.int32, name='X1_len', shape=(None, ))
        self.X2_len = tf.placeholder(tf.int32, name='X2_len', shape=(None, ))
        self.Y = tf.placeholder(tf.int32, name='Y', shape=(None, ))
        self.F = tf.placeholder(tf.float32, name='F', shape=(None, config['feat_size']))

        self.dpool_index = tf.placeholder(tf.int32, name='dpool_index', shape=(None, config['data1_maxlen'], config['data2_maxlen'], 3))

        self.batch_size = tf.shape(self.X1)[0]

        self.embedding = tf.get_variable('embedding', initializer = config['embedding'], dtype=tf.float32, trainable=False)

        self.embed1 = tf.nn.embedding_lookup(self.embedding, self.X1)
        self.embed2 = tf.nn.embedding_lookup(self.embedding, self.X2)

        # batch_size * X1_maxlen * X2_maxlen
        self.cross = tf.einsum('abd,acd->abc', self.embed1, self.embed2)
        self.cross_img = tf.expand_dims(self.cross, 3)

        # convolution
        self.w1 = tf.get_variable('w1', initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.2, dtype=tf.float32) , dtype=tf.float32, shape=[2, 10, 1, 8])
        self.b1 = tf.get_variable('b1', initializer=tf.constant_initializer() , dtype=tf.float32, shape=[8])
        # batch_size * X1_maxlen * X2_maxlen * feat_out
        self.conv1 = tf.nn.relu(tf.nn.conv2d(self.cross_img, self.w1, [1, 1, 1, 1], "SAME") + self.b1)

        # dynamic pooling
        self.conv1_expand = tf.gather_nd(self.conv1, self.dpool_index)
        self.pool1 = tf.nn.max_pool(self.conv1_expand, 
                        [1, config['data1_maxlen'] / config['data1_psize'], config['data2_maxlen'] / config['data2_psize'], 1], 
                        [1, config['data1_maxlen'] / config['data1_psize'], config['data2_maxlen'] / config['data2_psize'], 1], "VALID")

        with tf.variable_scope('fc1'):
            self.fc1 = tf.nn.relu(tf.contrib.layers.linear(tf.reshape(self.pool1, [self.batch_size, config['data1_psize'] * config['data2_psize'] * 8]), 20))

        self.pred = tf.contrib.layers.linear(self.fc1, 1)

        pos = tf.strided_slice(self.pred, [0], [self.batch_size], [2])
        neg = tf.strided_slice(self.pred, [1], [self.batch_size], [2])

        self.loss = tf.reduce_mean(tf.maximum(1.0 + neg - pos, 0.0))

        self.train_model = tf.train.AdamOptimizer().minimize(self.loss)

        self.saver = tf.train.Saver(max_to_keep=20)
项目:deep_learning_study    作者:jowettcz    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:deep_learning_study    作者:jowettcz    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:YellowFin    作者:JianGoForIt    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
项目:MachineLearningTutorial    作者:SpikeKing    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def batch_producer(enc, dec, batch_size, name=None):
    data_len   = enc.shape[0]
    seq_len    = enc.shape[1]
    epoch_size = data_len // batch_size

    print("epoch size: %d " % epoch_size)

    with tf.name_scope(name, "batch", [enc, dec, batch_size]):
        enc = tf.convert_to_tensor(enc, name="enc", dtype=tf.float32)
        dec = tf.convert_to_tensor(dec, name="dec", dtype=tf.int32) 

        # generator 
        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()

        x = tf.strided_slice(enc, [0, 0, 0],
                             [batch_size, seq_len, 2],
                             [1, 1, 1])
        x.set_shape([batch_size, seq_len, 2 ])

        y = tf.strided_slice(dec, [0, 0],
                             [batch_size, seq_len],
                             [1, 1])

        y.set_shape([batch_size, seq_len])

        return x, y

# for test

#if __name__ == "__main__":
#    enc_in, dec_out = _load_data("./convex_hull_50_train.txt")
#    print(enc_in.shape)
#    print(dec_out.shape)
#    #print(enc_in)
#    x_batch, y_batch = batch_producer(enc_in, dec_out, batch_size=20)

#    with tf.Session() as sess:
#        coord = tf.train.Coordinator()
#        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

#        print(sess.run([x_batch, y_batch]))

#        coord.request_stop()
#        coord.join(threads)


# ====================
# visualization
# ====================
项目:keras_experiments    作者:avolkov1    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:adventures-in-ml-code    作者:adventuresinML    | 项目源码 | 文件源码
def read_data(file_q):
    # Code from https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_input.py
    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    # Dimensions of the images in the CIFAR-10 dataset.
    # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
    # input format.
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    # Every record consists of a label followed by the image, with a
    # fixed number of bytes for each.
    record_bytes = label_bytes + image_bytes

    # Read a record, getting filenames from the filename_queue.  No
    # header or footer in the CIFAR-10 format, so we leave header_bytes
    # and footer_bytes at their default of 0.
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(file_q)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    record_bytes = tf.decode_raw(value, tf.uint8)

    # The first bytes represent the label, which we convert from uint8->int32.
    result.label = tf.cast(
        tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

    # The remaining bytes after the label represent the image, which we reshape
    # from [depth * height * width] to [depth, height, width].
    depth_major = tf.reshape(
        tf.strided_slice(record_bytes, [label_bytes],
                         [label_bytes + image_bytes]),
        [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    reshaped_image = tf.cast(result.uint8image, tf.float32)

    height = 24
    width = 24

    # Image processing for evaluation.
    # Crop the central [height, width] of the image.
    resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                           height, width)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_standardization(resized_image)

    # Set the shapes of tensors.
    float_image.set_shape([height, width, 3])
    result.label.set_shape([1])

    return float_image, result.label
项目:visual-interaction-networks_tensorflow    作者:jaesik817    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:DeepLearningAndTensorflow    作者:azheng333    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
    """Iterate on the raw PTB data.

    This chunks up raw_data into batches of examples and returns Tensors that
    are drawn from these batches.

    Args:
      raw_data: one of the raw data outputs from ptb_raw_data.
      batch_size: int, the batch size.
      num_steps: int, the number of unrolls.
      name: the name of this operation (optional).

    Returns:
      A pair of Tensors, each shaped [batch_size, num_steps]. The second element
      of the tuple is the same data time-shifted to the right by one.

    Raises:
      tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
    """
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

        data_len = tf.size(raw_data)
        batch_len = data_len // batch_size
        data = tf.reshape(raw_data[0: batch_size * batch_len],
                          [batch_size, batch_len])

        epoch_size = (batch_len - 1) // num_steps
        assertion = tf.assert_positive(
            epoch_size,
            message="epoch_size == 0, decrease batch_size or num_steps")
        with tf.control_dependencies([assertion]):
            epoch_size = tf.identity(epoch_size, name="epoch_size")

        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
        x = tf.strided_slice(data, [0, i * num_steps],
                             [batch_size, (i + 1) * num_steps])
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i * num_steps + 1],
                             [batch_size, (i + 1) * num_steps + 1])
        y.set_shape([batch_size, num_steps])
        return x, y
项目:DeepLearningAndTensorflow    作者:azheng333    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:nengo_dl    作者:nengo    | 项目源码 | 文件源码
def gather(self, src, force_copy=False):
        """Fetches the data corresponding to ``src`` from the base array.

        Parameters
        ----------
        src : :class:`.TensorSignal`
            Signal indicating the data to be read from base array
        force_copy : bool, optional
            If True, always perform a gather, not a slice (this forces a
            copy). Note that setting ``force_copy=False`` does not guarantee
            that a copy won't be performed.

        Returns
        -------
        ``tf.Tensor``
            Tensor object corresponding to a dense subset of data from the
            base array
        """

        if src.tf_indices is None:
            raise BuildError("Indices for %s have not been loaded into "
                             "TensorFlow" % src)

        logger.debug("gather")
        logger.debug("src %s", src)
        logger.debug("indices %s", src.indices)
        logger.debug("src base %s", self.bases[src.key])

        var = self.bases[src.key]

        # we prefer to get the data via `strided_slice` or `identity` if
        # possible, as it is more efficient
        if force_copy or src.as_slice is None:
            result = tf.gather(var, src.tf_indices)
        elif (src.indices[0] == 0 and
              src.indices[-1] == var.get_shape()[0].value - 1 and
              len(src.indices) == var.get_shape()[0]):
            result = var
        else:
            result = tf.strided_slice(var, *src.as_slice)

        # for some reason the shape inference doesn't work in some cases
        result.set_shape(src.tf_indices.get_shape()[:1].concatenate(
            var.get_shape()[1:]))

        # reshape the data according to the shape set in `src`, if there is
        # one, otherwise keep the shape of the base array
        if result.get_shape() != src.full_shape:
            result = tf.reshape(result, src.tf_shape)
            result.set_shape(src.full_shape)

        # whenever we read from an array we use this to mark it as "read"
        # (so that any future writes to the array will be scheduled after
        # the read)
        self.mark_gather(src)

        return result
项目:pathnet    作者:jaesik817    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:ran    作者:kentonl    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
项目:self-supervision    作者:gustavla    | 项目源码 | 文件源码
def resnet_atrous_conv(x, channels, size=3, padding='SAME', stride=1, hole=1, batch_norm=False,
         phase_test=None, activation=tf.nn.relu, name=None,
         parameter_name=None, bn_name=None, scale_name=None, summarize_scale=False, info=DummyDict(), parameters={},
         pre_adjust_batch_norm=False):
    if parameter_name is None:
        parameter_name = name
    if scale_name is None:
        scale_name = parameter_name
    with tf.name_scope(name):
        features = int(x.get_shape()[3])
        f = channels
        shape = [size, size, features, f]

        W_init, W_shape = _pretrained_resnet_conv_weights_initializer(parameter_name, parameters,
                                                          info=info.get('init'),
                                                          pre_adjust_batch_norm=pre_adjust_batch_norm,
                                                          bn_name=bn_name, scale_name=scale_name)
        b_init, b_shape = _pretrained_resnet_biases_initializer(scale_name, parameters,
                                                    info=info.get('init'),
                                                    pre_adjust_batch_norm=pre_adjust_batch_norm,
                                                    bn_name=bn_name)

        assert W_shape is None or tuple(W_shape) == tuple(shape), "Incorrect weights shape for {} (file: {}, spec: {})".format(name, W_shape, shape)
        assert b_shape is None or tuple(b_shape) == (f,), "Incorrect bias shape for {} (file: {}, spec; {})".format(name, b_shape, (f,))

        with tf.variable_scope(name):
            W = tf.get_variable('weights', shape, dtype=tf.float32,
                                initializer=W_init)
            b = tf.get_variable('biases', [f], dtype=tf.float32,
                                initializer=b_init)

        if hole == 1:
            raw_conv0 = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=padding)
        else:
            assert stride == 1
            raw_conv0 = tf.nn.atrous_conv2d(x, W, rate=hole, padding=padding)
        #conv0 = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding=padding)
        if stride > 1:
            conv0 = tf.strided_slice(raw_conv0, [0, 0, 0, 0], raw_conv0.get_shape(), [1, stride, stride, 1])
        else:
            conv0 = raw_conv0
        h1 = tf.reshape(tf.nn.bias_add(conv0, b), conv0.get_shape())

        z = h1

    if activation is not None:
        z = activation(z)

    if info.get('scale_summary'):
        with tf.name_scope('activation'):
            tf.summary.scalar('activation/' + name, tf.sqrt(tf.reduce_mean(z**2)))

    info['activations'][name] = z
    return z
项目:gradual-learning-rnn    作者:zivaharoni    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0: batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
项目:tf-variational-dropout    作者:BayesWatch    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:taas-examples    作者:caicloud    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
项目:TensorFlowOnSpark    作者:yahoo    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:hellish    作者:unlimblue    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.
  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.
  Args:
    filename_queue: A queue of strings with the filenames to read from.
  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:tensorflow-statereader    作者:sebastianGehrmann    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
    """Iterate on the raw data.

    This chunks up raw_data into batches of examples and returns Tensors that
    are drawn from these batches.

    Args:
      raw_data: one of the raw data outputs from ptb_raw_data.
      batch_size: int, the batch size.
      num_steps: int, the number of unrolls.
      name: the name of this operation (optional).

    Returns:
      A pair of Tensors, each shaped [batch_size, num_steps]. The second element
      of the tuple is the same data time-shifted to the right by one.

    Raises:
      tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
    """
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

        data_len = tf.size(raw_data)
        batch_len = data_len // batch_size
        data = tf.reshape(raw_data[0: batch_size * batch_len],
                          [batch_size, batch_len])

        epoch_size = (batch_len - 1) // num_steps
        assertion = tf.assert_positive(
            epoch_size,
            message="epoch_size == 0, decrease batch_size or num_steps")
        with tf.control_dependencies([assertion]):
            epoch_size = tf.identity(epoch_size, name="epoch_size")

        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
        x = tf.strided_slice(data, [0, i * num_steps], [batch_size, (i + 1) * num_steps], [1, 1])
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i * num_steps + 1], [batch_size, (i + 1) * num_steps + 1], [1, 1])
        y.set_shape([batch_size, num_steps])
        # print(y, "label size")
        # print(x, "input size")
        return x, y
项目:hops-tensorflow    作者:hopshadoop    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:nip-convnet    作者:gangchill    | 项目源码 | 文件源码
def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])

  return result
项目:tf-sparql    作者:derdav3    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y
项目:ActionRecognition    作者:woodfrog    | 项目源码 | 文件源码
def ptb_producer(raw_data, batch_size, num_steps, name=None):
    """Iterate on the raw PTB data.

    This chunks up raw_data into batches of examples and returns Tensors that
    are drawn from these batches.

    Args:
      raw_data: one of the raw data outputs from ptb_raw_data.
      batch_size: int, the batch size.
      num_steps: int, the number of unrolls.
      name: the name of this operation (optional).

    Returns:
      A pair of Tensors, each shaped [batch_size, num_steps]. The second element
      of the tuple is the same data time-shifted to the right by one.

    Raises:
      tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
    """
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

        data_len = tf.size(raw_data)  # number of elements

        # Separate the whole data into batch_size parts (each part has
        #  batch_len elements),
        # so that the batches retrieve one sample from every part at a time to
        # build a batch of size batch_size
        batch_len = data_len // batch_size
        data = tf.reshape(raw_data[0: batch_size * batch_len],
                          [batch_size, batch_len])

        # The size of epoch, which means the number of batches to run through the
        # whole data for once
        epoch_size = (batch_len - 1) // num_steps
        assertion = tf.assert_positive(
            epoch_size,
            message="epoch_size == 0, decrease batch_size or num_steps")
        with tf.control_dependencies([assertion]):
            epoch_size = tf.identity(epoch_size, name="epoch_size")

        # Read the document for reading data:
        #   https: // www.tensorflow.org / programmers_guide / reading_data
        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
        x = tf.strided_slice(data, [0, i * num_steps],
                             [batch_size, (i + 1) * num_steps])
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i * num_steps + 1],
                             [batch_size, (i + 1) * num_steps + 1])
        y.set_shape([batch_size, num_steps])
        return x, y