Python tensorflow 模块,int8() 实例源码

我们从Python开源项目中,提取了以下17个代码示例,用于说明如何使用tensorflow.int8()

项目:jack    作者:uclmr    | 项目源码 | 文件源码
def create_torch_variable(self, value, gpu=False):
        """Convenience method that produces a tensor given the value of the defined type.

        Returns: a torch tensor of same type.
        """
        if isinstance(value, torch.autograd.Variable):
            if gpu:
                value = value.cuda()
            return value
        if not torch.is_tensor(value):
            if not isinstance(value, np.ndarray):
                value = np.array(value, dtype=self.dtype.as_numpy_dtype)
            else:
                value = value.astype(self.dtype.as_numpy_dtype)
            if value.size == 0:
                return value
            allowed = [tf.int16, tf.int32, tf.int64, tf.float16, tf.float32, tf.float64, tf.int8]
            if self.dtype in allowed:
                value = torch.autograd.Variable(torch.from_numpy(value))
        else:
            value = torch.autograd.Variable(value)
        if gpu and isinstance(value, torch.autograd.Variable):
            value = value.cuda()
        return value
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:magenta    作者:tensorflow    | 项目源码 | 文件源码
def mu_law(x, mu=255, int8=False):
  """A TF implementation of Mu-Law encoding.

  Args:
    x: The audio samples to encode.
    mu: The Mu to use in our Mu-Law.
    int8: Use int8 encoding.

  Returns:
    out: The Mu-Law encoded int8 data.
  """
  out = tf.sign(x) * tf.log(1 + mu * tf.abs(x)) / np.log(1 + mu)
  out = tf.floor(out * 128)
  if int8:
    out = tf.cast(out, tf.int8)
  return out
项目:IDNNs    作者:ravidziv    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:TextGAN    作者:ankitkv    | 项目源码 | 文件源码
def unwrap_output_sparse(self, final_state, include_stop_tokens=True):
        """
        Retreive the beam search output from the final state.

        Returns a sparse tensor with underlying dimensions of [batch_size, max_len]
        """
        output_dense = final_state[0]
        mask = tf.not_equal(output_dense, self.stop_token)

        if include_stop_tokens:
            output_dense = tf.concat(1, [output_dense[:, 1:],
                                         tf.ones_like(output_dense[:, 0:1]) *
                                         self.stop_token])
            mask = tf.concat(1, [mask[:, 1:], tf.cast(tf.ones_like(mask[:, 0:1],
                                                                   dtype=tf.int8),
                                                      tf.bool)])

        return sparse_boolean_mask(output_dense, mask)
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:keras_superpixel_pooling    作者:parag2489    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:InnerOuterRNN    作者:Chemoinformatics    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def test_embedding_int8(self):
    weights = np.array([[1, 2], [3, 4]], dtype='float32')
    embedding = tdl.Embedding(2, 2, initializer=weights)
    with self.test_session() as sess:
      embeddings = [embedding(tf.constant([x], dtype=tf.int8))
                    for x in [0, 1, 7, -5]]
      sess.run(tf.global_variables_initializer())
      self.assertAllEqual([[[1, 2]], [[3, 4]], [[3, 4]], [[3, 4]]],
                          sess.run(embeddings))
项目:the-wavenet-pianist    作者:821760408-sp    | 项目源码 | 文件源码
def mu_law_encode(audio, quantization_channels=256):
    """Quantizes waveform amplitudes."""
    with tf.name_scope('encode'):
        mu = quantization_channels - 1
        out = tf.sign(audio) * tf.log(1 + mu * tf.abs(audio)) / np.log(1 + mu)
        out = tf.cast(tf.floor(out * 128), tf.int8)
        return out


# tensorflow/magenta/blob/master/magenta/models/nsynth/utils.py#L79
项目:sparks    作者:ImpactHorizon    | 项目源码 | 文件源码
def read(filename_queue):
    class CAM17Record(object):
        pass

    result = CAM17Record()

    result.height = IMAGE_SIZE
    result.width = IMAGE_SIZE
    result.depth = CHANNELS

    reader = tf.TFRecordReader()
    result.key, value = reader.read(filename_queue)

    feature_map = {
        'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                            default_value=''),
        'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
                                                default_value=-1)
        }
    features = tf.parse_single_example(value, feature_map)
    result.label = tf.cast(features['image/class/label'], dtype=tf.int8)

    image_buffer = features['image/encoded']
    image = tf.image.decode_jpeg(image_buffer, channels=CHANNELS)

    depth_major = tf.reshape(image,
                                [result.width, result.height, result.depth])
    result.uint8image = tf.transpose(depth_major, [1, 0, 2])

    return result
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def test_input_int8(self):
    self._assert_dtype(
        np.int8, tf.int8, np.matrix([[1, 2], [3, 4]], dtype=np.int8))
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def test_input_int8(self):
    self._assert_dtype(
        np.int8, tf.int8, np.matrix([[1, 2], [3, 4]], dtype=np.int8))
项目:TF    作者:TFStudents    | 项目源码 | 文件源码
def runSum():
    a=tf.constant(12,dtype=tf.int8)
    b=tf.constant(10,dtype=tf.int8)
    sv=tf.train.Supervisor(logdir="./test1")
    with sv.managed_session() as sess:
        for i in range(10):
            if sv.should_stop():
                return
            print(sess.run([a,b]))
项目:ana    作者:iFixit    | 项目源码 | 文件源码
def testDNN():

  # copied from quick start sample code https://www.tensorflow.org/get_started/tflearn

  # Load datasets.
  training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
      filename='training.csv',
      target_dtype=np.int8,
      features_dtype=np.int8)
  test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
      filename='testset.csv',
      target_dtype=np.int8,
      features_dtype=np.int8)

  feature_columns = [tf.contrib.layers.real_valued_column("", dtype=tf.int8, dimension=1000)]

  classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
                                              hidden_units=[10],
                                              n_classes=2,
                                              model_dir="/tmp/spammodel3")
  # Define the training inputs
  def get_train_inputs():
    x = tf.constant(training_set.data)
    y = tf.constant(training_set.target)

    return x, y

  # Fit model.
  classifier.fit(input_fn=get_train_inputs, steps=2000)

  # Define the test inputs
  def get_test_inputs():
    x = tf.constant(test_set.data)
    y = tf.constant(test_set.target)

    return x, y

  # Evaluate accuracy.
  score = classifier.evaluate(input_fn=get_test_inputs,
                                       steps=1)

  print("\nTest Accuracy: {0:f}\n".format(score["accuracy"]))

  for key in score:
    print(key, score[key])

  # Test Accuracy: 0.981333

  # accuracy/baseline_label_mean 0.0233333
  # loss 0.0698425
  # auc 0.892803
  # global_step 4000
  # accuracy/threshold_0.500000_mean 0.981333
  # recall/positive_threshold_0.500000_mean 0.257143
  # labels/prediction_mean 0.0196873
  # accuracy 0.981333
  # precision/positive_threshold_0.500000_mean 0.818182
  # labels/actual_label_mean 0.0233333