Python tensorflow 模块,as_dtype() 实例源码

我们从Python开源项目中,提取了以下26个代码示例,用于说明如何使用tensorflow.as_dtype()

项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def __new__(cls, dtype=None, shape=None, tag='', tensor=None):
    if tensor is not None:
      if dtype is not None:
        raise TypeError('Specify only one of tensor and dtype.')
      if shape is not None:
        raise TypeError('Specify only one of tensor and shape.')
      dtype = tensor.dtype
      shape = tensor.get_shape().as_list()
    elif not (isinstance(dtype, tf.DType) or
              isinstance(dtype, six.string_types)):
      raise TypeError('%r is not a tf.DType or string' % (dtype,))
    dtype = tf.as_dtype(dtype).base_dtype.name
    if not all(isinstance(s, numbers.Integral) and s >= 0 for s in shape):
      raise TypeError('shape must be non-negative integers: %s' % shape)
    shape = tuple(int(s) for s in shape)
    if not isinstance(tag, six.string_types):
      raise TypeError('A TypeShape tag must be a string; type of %r is %s' %
                      (tag, type(tag)))
    return _TypeShape.__new__(cls, dtype, shape, tag)
项目:rbm-ae-tf    作者:Cospel    | 项目源码 | 文件源码
def __init__(self, images, labels, fake_data=False, one_hot=False,
               dtype=tf.float32):
    """Construct a DataSet.

    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = tf.as_dtype(dtype).base_dtype
    if dtype not in (tf.uint8, tf.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == tf.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def _create_variables(self):
    if self.input_type.ndim != 0:
      raise TypeError('Embeddings take scalar inputs.')
    dtype = tf.as_dtype(self.input_type.dtype)
    if not dtype.is_integer: raise TypeError('Embeddings take integer inputs.')
    if dtype not in (tf.int32, tf.int64):  # only dtypes supported by tf.gather
      if np.iinfo(dtype.as_numpy_dtype).max > 2147483647:
         # pedantic future-proofing to handle hypothetical tf.uint64
        raise TypeError('cannot gather or upcast dtype %s' % dtype)
      self._cast = True
    else:
      self._cast = False
    self._weights = tf.get_variable(
        'weights', self._weights_shape, initializer=self._initializer,
        trainable=self._trainable)
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def __init__(self, shape, dtype='float32', name=None):
    super(Tensor, self).__init__(input_type=tdt.PyObjectType(),
                                 output_type=tdt.TensorType(shape, dtype),
                                 name=name)
    self._dtype = np.dtype(self.output_type.dtype)
    if not shape and tf.as_dtype(dtype).is_integer:  # memoize scalar ints
      self._evaluate = self._evaluate_memoized
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def dtype_enum(self):
    """The dtype of this TypeShape as an enum."""
    return tf.as_dtype(self.dtype).as_datatype_enum
项目:aboleth    作者:data61    | 项目源码 | 文件源码
def _build(self, **kwargs):
        """Build the mask input layer."""
        Mask = kwargs[self.name]
        assert tf.as_dtype(Mask.dtype).is_bool
        M = tf.convert_to_tensor(Mask)
        return M, 0.0
项目:aboleth    作者:data61    | 项目源码 | 文件源码
def _check_rank_type(self, X, M):
        """Check the rank of the input tensors."""
        data_rank = len(X.shape)
        mask_rank = len(M.shape)
        assert data_rank == 3
        assert mask_rank == 2
        assert tf.as_dtype(M.dtype).is_bool
项目:transform    作者:tensorflow    | 项目源码 | 文件源码
def __init__(self, dtype):
    self._dtype = tf.as_dtype(dtype)
项目:transform    作者:tensorflow    | 项目源码 | 文件源码
def __setstate__(self, state):
    self._dtype = tf.as_dtype(state)
项目:transform    作者:tensorflow    | 项目源码 | 文件源码
def __setstate__(self, state):
    self._dtype = tf.as_dtype(state['dtype'])
    self._is_categorical = state['is_categorical']
    self._min_value = state['min_value']
    self._max_value = state['max_value']
    self._vocabulary_file = state['vocabulary_file']
项目:DataMining    作者:lidalei    | 项目源码 | 文件源码
def __init__(self, images, labels, dtype=tf.float32):
        dtype = tf.as_dtype(dtype).base_dtype

        if dtype is not tf.float32:
            raise TypeError('Invalid image dtype %r, expected float32' %dtype)
        assert images.shape[0] == labels.shape[0], ('images.shape: %s labels.shape: %s' % (images.shape, labels.shape))

        self._num_examples = images.shape[0]
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:DeepLearning    作者:educharlie    | 项目源码 | 文件源码
def __init__(self, images, labels, fake_data=False, one_hot=False,
               dtype=tf.float32):
    """Construct a DataSet.

    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = tf.as_dtype(dtype).base_dtype
    if dtype not in (tf.uint8, tf.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == tf.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:tefla    作者:openAGI    | 项目源码 | 文件源码
def clip_gradients_by_global_norm(gradients_variables, clip_norm=20.):
    """Clips gradients of a multitask loss by their global norm.

    Ignores all-zero tensors when computing the global norm.

    Args:
      gradients_variables: a list of pairs (gradient, variable).
      clip_norm: a float Tensor, the global norm to clip on. Default is 20.0.

    Returns:
      list: A list of pairs of the same type as gradients_variables,.
      fixed_global_norm: A 0-D (scalar) Tensor representing the global norm.
    """
    gradients, variables = six.moves.zip(*gradients_variables)

    def _replace_nonexisting_grad(grad):
        if grad is None:
            return grad
        all_zeros = _is_all_zeros(grad)
        return tf.cond(
            all_zeros,
            lambda: tf.zeros([], dtype=tf.as_dtype(grad.dtype)),
            lambda: grad)

    nonzero_gradients = [_replace_nonexisting_grad(g) for g in gradients]
    fixed_global_norm = tf.global_norm(nonzero_gradients)
    gradients, _ = tf.clip_by_global_norm(
        gradients, clip_norm, use_norm=fixed_global_norm)
    return list(six.moves.zip(gradients, variables)), fixed_global_norm
项目:tensorflow-mnist-tutorial    作者:jaskru    | 项目源码 | 文件源码
def __init__(self, images, labels,
                 dtype=tf.float32, flatten_images=True):
        """Construct a DataSet.

        `dtype` can be either
        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
        `[0, 1]`.
        """
        dtype = tf.as_dtype(dtype).base_dtype
        if dtype not in (tf.uint8, tf.float32):
            raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                            dtype)
        assert images.shape[0] == labels.shape[0], (
            'images.shape: %s labels.shape: %s' % (images.shape,
                                                   labels.shape))
        self._num_examples = images.shape[0]

        # Convert shape from [num examples, rows, columns, depth]
        # to [num examples, rows*columns] (assuming depth == 1)
        assert images.shape[3] == 1
        if (flatten_images):
            images = images.reshape(images.shape[0],
                                    images.shape[1] * images.shape[2])
        if dtype == tf.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(numpy.float32)
            images = numpy.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:nengo_dl    作者:nengo    | 项目源码 | 文件源码
def cast_dtype(dtype, target):
    """Changes float dtypes to the target dtype, leaves others unchanged.

    Used to map all float values to a target precision.  Also casts numpy
    dtypes to TensorFlow dtypes.

    Parameters
    ----------
    dtype : ``tf.DType`` or :class:`~numpy:numpy.dtype`
        Input dtype to be converted
    target : ``tf.DType``
        Floating point dtype to which all floating types should be converted

    Returns
    -------
    ``tf.DType``
        Input dtype, converted to ``target`` type if necessary
    """

    if not isinstance(dtype, tf.DType):
        dtype = tf.as_dtype(dtype)

    if dtype.is_floating:
        dtype = target

    return dtype
项目:All-Convnet-Autoencoder-Example    作者:loliverhennigh    | 项目源码 | 文件源码
def __init__(self, images, labels, fake_data=False, one_hot=False,
               dtype=tf.float32):
    """Construct a DataSet.

    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = tf.as_dtype(dtype).base_dtype
    if dtype not in (tf.uint8, tf.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == tf.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:KMachineLearning    作者:jiangkang    | 项目源码 | 文件源码
def __init__(self, images, labels, fake_data=False, one_hot=False,
               dtype=tf.float32):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = tf.as_dtype(dtype).base_dtype
    if dtype not in (tf.uint8, tf.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]
      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == tf.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:dreamscape    作者:themattinthehatt    | 项目源码 | 文件源码
def __init__(self, images, labels, fake_data=False, one_hot=False,
                 dtype=tf.float32):
        """Construct a DataSet.
        one_hot arg is used only if fake_data is true.  `dtype` can be either
        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
        `[0, 1]`.
        """

        dtype = tf.as_dtype(dtype).base_dtype
        if dtype not in (tf.uint8, tf.float32):
            raise TypeError(
                'Invalid image dtype %r, expected uint8 or float32' % dtype)
        if fake_data:
            self._num_examples = 10000
            self.one_hot = one_hot
        else:
            assert images.shape[0] == labels.shape[0], (
                'images.shape: %s labels.shape: %s' % (images.shape,
                                                       labels.shape))
        self._num_examples = images.shape[0]
        self._width = images.shape[1]
        self._height = images.shape[2]
        self._depth = images.shape[3]

        # Convert shape from [num examples, rows, columns, depth]
        # to [num examples, rows*columns*depth]
        assert images.shape[3] == IMAGE_DEPTH
        images = images.reshape(
            images.shape[0],
            images.shape[1] * images.shape[2] * images.shape[3])
        if dtype == tf.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(np.float32)
            images = np.multiply(images, 1.0 / 255.0)

        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:GSN    作者:peteykun    | 项目源码 | 文件源码
def __init__(self, images, labels, fake_data=False, one_hot=False,
               dtype=tf.float32):
    """Construct a DataSet.

    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = tf.as_dtype(dtype).base_dtype
    if dtype not in (tf.uint8, tf.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == tf.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def _process_health_pill_value(self,
                                 wall_time,
                                 step,
                                 device_name,
                                 output_slot,
                                 node_name,
                                 tensor_proto,
                                 node_name_set=None):
    """Creates a HealthPillEvent containing various properties of a health pill.

    Args:
      wall_time: The wall time in seconds.
      step: The session run step of the event.
      device_name: The name of the node's device.
      output_slot: The numeric output slot.
      node_name: The name of the node (without the output slot).
      tensor_proto: A tensor proto of data.
      node_name_set: An optional set of node names that are relevant. If not
        provided, no filtering by relevance occurs.

    Returns:
      An event_accumulator.HealthPillEvent. Or None if one could not be created.
    """
    if node_name_set and node_name not in node_name_set:
      # This event is not relevant.
      return None

    # Since we seek health pills for a specific step, this function
    # returns 1 health pill per node per step. The wall time is the
    # seconds since the epoch.
    elements = list(tf.make_ndarray(tensor_proto))
    return HealthPillEvent(
        wall_time=wall_time,
        step=step,
        device_name=device_name,
        output_slot=output_slot,
        node_name=node_name,
        dtype=repr(tf.as_dtype(elements[12])),
        shape=elements[14:],
        value=elements)
项目:statestream    作者:VolkerFischer    | 项目源码 | 文件源码
def variable(value, dtype=None, borrow=None, broadcastable=None, name=None, settable=True):
    if dtype is None:
        dtype = np.float32
    x = tf.Variable(value, dtype=tf.as_dtype(dtype), name=name)
    x._statestream_settable = settable
    if settable:
        x._assign_placeholder = tf.placeholder(dtype, shape=value.shape)
        x._assign_op = x.assign(x._assign_placeholder)
    return x
项目:statestream    作者:VolkerFischer    | 项目源码 | 文件源码
def scalar(value, dtype=np.float32, borrow=None, name=None, settable=True):
    if dtype is None:
        dtype = np.float32
    x = tf.Variable(value, dtype=tf.as_dtype(dtype), name=name)
    x._statestream_settable = settable
    if settable:
        x._assign_placeholder = tf.placeholder(dtype, shape=x.get_shape().as_list())
        x._assign_op = x.assign(x._assign_placeholder)
    return x
项目:statestream    作者:VolkerFischer    | 项目源码 | 文件源码
def set_value(x, value):
    if x._statestream_settable:
        value = np.asarray(value, dtype=x.dtype.base_dtype.name)
        tf_dtype = tf.as_dtype(x.dtype.name.split('_')[0])
        tf_get_session().run(x._assign_op, feed_dict={x._assign_placeholder: value})
    else:
        raise TypeError("Tried to set / assign non-settable tensorflow variable: " + str(x.name))
项目:statestream    作者:VolkerFischer    | 项目源码 | 文件源码
def zeros(shape, dtype=None, name=None):
    if dtype is None:
        dtype = np.float32
    return tf.zeros(shape=shape, dtype=tf.as_dtype(dtype), name=name)
项目:statestream    作者:VolkerFischer    | 项目源码 | 文件源码
def ones(shape, dtype=None, name=None):
    if dtype is None:
        dtype = np.float32
    return tf.ones(shape=shape, dtype=tf.as_dtype(dtype), name=name)
项目:tf-tutorial    作者:zchen0211    | 项目源码 | 文件源码
def __init__(self, images, labels, fake_data=False, one_hot=False,
               dtype=tf.float32, trim_flag=False):
    """Construct a DataSet.

    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = tf.as_dtype(dtype).base_dtype
    if dtype not in (tf.uint8, tf.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      # images = images.reshape(images.shape[0],
      #                        images.shape[1] * images.shape[2])
      if dtype == tf.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(np.float32)
        images = np.multiply(images, 1.0 / 255.0)

      # log.info(str(images.max()))
      log.info(str(images.shape))  # (50000, 28, 28, 1)
      log.info(str(labels.shape))

      # if trim_flag:
      # images = images[:500]
      # labels = labels[:500]

      # add generated data
      '''gen_data = np.load('mnist-gen')
      images = np.concatenate((images, gen_data['image']))
      labels = np.concatenate((labels, gen_data['label']))'''

      self._num_examples = images.shape[0]
      log.info('using %d data for training' % self._num_examples )

    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0