Python tensorflow 模块,uint16() 实例源码

我们从Python开源项目中,提取了以下25个代码示例,用于说明如何使用tensorflow.uint16()

项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:IDNNs    作者:ravidziv    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:DeepCellSeg    作者:arbellea    | 项目源码 | 文件源码
def _get_image(self):
        _, records = self.reader.read(self.input_queue)
        file_names = tf.decode_csv(records, [tf.constant([], tf.string), tf.constant([], tf.string)],
                                   field_delim=None, name=None)

        im_raw = tf.read_file(self.base_folder+file_names[0])
        seg_raw = tf.read_file(self.base_folder+file_names[1])
        image = tf.reshape(
                            tf.cast(tf.image.decode_png(
                                                    im_raw,
                                                    channels=1, dtype=tf.uint16),
                                    tf.float32), self.image_size, name='input_image')
        seg = tf.reshape(
                        tf.cast(tf.image.decode_png(
                                                    seg_raw,
                                                    channels=1, dtype=tf.uint8),
                                tf.float32), self.image_size, name='input_seg')

        return image, seg, file_names[0]
项目:DeepCellSeg    作者:arbellea    | 项目源码 | 文件源码
def _get_image(self):

        im_filename = tf.sparse_tensor_to_dense(tf.string_split(tf.expand_dims(self.raw_queue.dequeue(), 0), ':'), '')
        im_filename.set_shape([1, 2])
        im_raw = tf.read_file(self.base_folder+im_filename[0][0])
        seg_raw = tf.read_file(self.base_folder+im_filename[0][1])

        image = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                           self.image_size, name='input_image')
        seg = tf.reshape(tf.cast(tf.image.decode_png(seg_raw, channels=1, dtype=tf.uint8), tf.float32), self.image_size,
                         name='input_seg')
        if self.partial_frame:
            crop_y_start = int(((1-self.partial_frame) * self.image_size[0])/2)
            crop_y_end = int(((1+self.partial_frame) * self.image_size[0])/2)
            crop_x_start = int(((1-self.partial_frame) * self.image_size[1])/2)
            crop_x_end = int(((1+self.partial_frame) * self.image_size[1])/2)
            image = tf.slice(image, [crop_y_start, crop_x_start, 0], [crop_y_end, crop_x_end, -1])
            seg = tf.slice(seg, [crop_y_start, crop_x_start, 0], [crop_y_end, crop_x_end, -1])

        return image, seg, im_filename[0][0], im_filename[0][1]
项目:DeepCellSeg    作者:arbellea    | 项目源码 | 文件源码
def _get_image_sequence(self):
        filenames = self.raw_queue
        im_list = []
        seg_list = []
        for i in range(0, len(filenames), 2):
            im_filename, seg_filename = filenames[i], filenames[i+1]
            im_raw = tf.read_file(self.base_folder+im_filename)
            seg_raw = tf.read_file(self.base_folder+seg_filename)

            image_size = self.image_size + (1, )
            image = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                               image_size)
            seg = tf.reshape(tf.cast(tf.image.decode_png(seg_raw, channels=1, dtype=tf.uint8), tf.float32),
                             image_size)
            if self.partial_frame:
                crop_y_start = int(((1-self.partial_frame) * image_size[0])/2)
                crop_y_end = int(((1+self.partial_frame) * image_size[0])/2)
                crop_x_start = int(((1-self.partial_frame) * image_size[1])/2)
                crop_x_end = int(((1+self.partial_frame) * image_size[1])/2)
                image = tf.slice(image, [crop_y_start, crop_x_start, 0], [crop_y_end, crop_x_end, -1])
                seg = tf.slice(seg, [crop_y_start, crop_x_start, 0], [crop_y_end, crop_x_end, -1])
            im_list.append(image)
            seg_list.append(seg)

        return im_list, seg_list, filenames
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:keras_superpixel_pooling    作者:parag2489    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:InnerOuterRNN    作者:Chemoinformatics    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype)
项目:deep-RL-DQN-tensorflow    作者:ZidanMusk    | 项目源码 | 文件源码
def summANDsave(self,training = True):

        with tf.name_scope('saversANDsummaries'):

            if training:
                #saver
                self.saver_for_train = tf.train.Saver(keep_checkpoint_every_n_hours=2,
                                                      max_to_keep=1)  # will save all the tf graph vars!!!
                self.saver_for_play = tf.train.Saver(tf.trainable_variables(), keep_checkpoint_every_n_hours=2,
                                                     max_to_keep=2)  # used after training
                self.train_writer = tf.summary.FileWriter(self.trainSummaryDir)

                self.latest_checkpoint = tf.train.latest_checkpoint(self.trainDir)

                #summaries
                # loss
                self.lossTotalSummaryHolder = tf.placeholder(dtype = tf.float16)
                self.lossTotalSummary = tf.summary.scalar('total Loss per episode', self.lossTotalSummaryHolder)
                self.lossAvgSummaryHolder = tf.placeholder(dtype = tf.float16)
                self.lossAvgSummary = tf.summary.scalar('Avg.Loss per episode', self.lossAvgSummaryHolder)
                self.episodeUpdatesHolder = tf.placeholder(dtype = tf.uint16)
                self.episodeUpdates = tf.summary.scalar('Episode updates', self.episodeUpdatesHolder)

            else:

                self.latest_checkpoint = tf.train.latest_checkpoint(self.playDir)

            # reward
            self.rewardTotalSummaryHolder = tf.placeholder(dtype=tf.float16)
            self.rewardTotalSummary = tf.summary.scalar('total Reward per episode', self.rewardTotalSummaryHolder)
            self.rewardAvgSummaryHolder = tf.placeholder(dtype=tf.float16)
            self.rewardAvgSummary = tf.summary.scalar('Avg.Reward per episode', self.rewardAvgSummaryHolder)
            self.episodeDurSummaryHolder = tf.placeholder(dtype=tf.float16)
            self.episodeDurSummary = tf.summary.scalar('Episode duration', self.episodeDurSummaryHolder)

            #savers
            self.play_writer = tf.summary.FileWriter(self.playSummaryDir)
            #merger
            self.summary_merger = tf.summary.merge_all()
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def test_input_uint16(self):
    self._assert_dtype(
        np.uint16, tf.uint16, np.matrix([[1, 2], [3, 4]], dtype=np.uint16))
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def test_input_uint16(self):
    self._assert_dtype(
        np.uint16, tf.uint16, np.matrix([[1, 2], [3, 4]], dtype=np.uint16))
项目:single-image-depth-estimation    作者:liuhyCV    | 项目源码 | 文件源码
def train_batch_inputs(dataset_csv_file_path, batch_size):

    with tf.name_scope('batch_processing'):

        if (os.path.isfile(dataset_csv_file_path) != True):
            raise ValueError('No data files found for this dataset')

        filename_queue = tf.train.string_input_producer([dataset_csv_file_path], shuffle=True)
        reader = tf.TextLineReader()
        _, serialized_example = reader.read(filename_queue)
        filename, depth_filename = tf.decode_csv(serialized_example, [["path"], ["annotation"]])

        # input
        png = tf.read_file(filename)
        image = tf.image.decode_png(png, channels=3)
        image = tf.cast(image, tf.float32)
        # target
        depth_png = tf.read_file(depth_filename)
        depth = tf.image.decode_png(depth_png, dtype=tf.uint16, channels=1)
        depth = tf.cast(depth, dtype=tf.int16)

        # resize
        image = tf.image.resize_images(image, (IMAGE_HEIGHT, IMAGE_WIDTH))
        depth = tf.image.resize_images(depth, (TARGET_HEIGHT, TARGET_WIDTH))
        invalid_depth = tf.sign(depth)

        # generate batch
        images, depths, invalid_depths = tf.train.batch(
            [image, depth, invalid_depth],
            batch_size = batch_size,
            num_threads = 4,
            capacity = 50 + 3 * batch_size
        )
        return images, depths, invalid_depths
项目:single-image-depth-estimation    作者:liuhyCV    | 项目源码 | 文件源码
def eval_batch_inputs(dataset_csv_file_path, batch_size):

    with tf.name_scope('eval_batch_processing'):

        if (os.path.isfile(dataset_csv_file_path) != True):
            raise ValueError('No data files found for this dataset')

        filename_queue = tf.train.string_input_producer([dataset_csv_file_path], shuffle=True)
        reader = tf.TextLineReader()
        _, serialized_example = reader.read(filename_queue)
        filename, depth_filename = tf.decode_csv(serialized_example, [["path"], ["annotation"]])

        # input
        png = tf.read_file(filename)
        image = tf.image.decode_png(png, channels=3)
        image = tf.cast(image, tf.float32)
        # target
        depth_png = tf.read_file(depth_filename)
        depth = tf.image.decode_png(depth_png, dtype=tf.uint16, channels=1)
        depth = tf.cast(depth, dtype=tf.int16)

        # resize
        image = tf.image.resize_images(image, (IMAGE_HEIGHT, IMAGE_WIDTH))
        depth = tf.image.resize_images(depth, (TARGET_HEIGHT, TARGET_WIDTH))
        invalid_depth = tf.sign(depth)

        # generate batch
        images, depths, invalid_depths = tf.train.batch(
            [image, depth, invalid_depth],
            batch_size = batch_size,
            num_threads = 4,
            capacity = 50 + 3 * batch_size
        )
        return images, depths, invalid_depths
项目:DeepCellSeg    作者:arbellea    | 项目源码 | 文件源码
def _get_image(self):

        _, records = self.reader.read(self.input_queue)
        file_names = tf.decode_csv(records, [tf.constant([],  tf.string), tf.constant([], tf.string)], field_delim=None,
                                   name=None)

        im_raw = tf.read_file(self.base_folder+file_names[0])
        seg_raw = tf.read_file(self.base_folder+file_names[1])
        image = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                           self.image_size, name='input_image')
        seg = tf.reshape(tf.cast(tf.image.decode_png(seg_raw, channels=1, dtype=tf.uint8), tf.float32),
                         self.image_size, name='input_seg')

        return image, seg, file_names[0]
项目:DeepCellSeg    作者:arbellea    | 项目源码 | 文件源码
def _get_image(self):

        filename = tf.sparse_tensor_to_dense(tf.string_split(tf.expand_dims(self.raw_queue.dequeue(), 0), ':'), '')
        filename.set_shape([1, 2])
        # seg_filename = self.seg_queue.dequeue()

        im_raw = tf.read_file(self.base_folder+filename[0][0])
        seg_raw = tf.read_file(self.base_folder+filename[0][1])
        image = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                           self.image_size, name='input_image')
        seg = tf.reshape(tf.cast(tf.image.decode_png(seg_raw, channels=1, dtype=tf.uint8), tf.float32), self.image_size,
                         name='input_seg')

        return image, seg, filename[0][0], filename[0][1]
项目:DeepCellSeg    作者:arbellea    | 项目源码 | 文件源码
def _get_image(self):
        filename = self.raw_queue.dequeue()
        im_raw = tf.read_file(self.base_folder+filename)
        image_size = self.image_size + (1, )
        image = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                           image_size)

        return image, filename
项目:DeepCellSeg    作者:arbellea    | 项目源码 | 文件源码
def _get_image(self):
        image_size = self.image_size + (1, )
        filename_fw = self.raw_queue_fw.dequeue()
        im_raw = tf.read_file(self.base_folder+filename_fw)
        image_fw = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                              image_size)
        filename_bw = self.raw_queue_bw.dequeue()
        im_raw = tf.read_file(self.base_folder + filename_bw)

        image_bw = tf.reshape(tf.cast(tf.image.decode_png(im_raw, channels=1, dtype=tf.uint16), tf.float32),
                              image_size)

        return image_fw, filename_fw, image_bw, filename_bw
项目:monodepth360    作者:srijanparmeshwar    | 项目源码 | 文件源码
def tf_read_raw(image_path):
    image = tf.image.decode_png(tf.read_file(image_path), dtype = tf.uint16)
    return tf.expand_dims(image, 0)
项目:nn-compression    作者:anithapk    | 项目源码 | 文件源码
def conv2SaveSparse(chkPt,outDir):
    #conver weights to sparse format
    with tf.Session() as sess:
        saver = tf.train.import_meta_graph(chkPt+".meta")
        saver.restore(sess,"./"+chkPt)
        lay_name = [v.name for v in tf.trainable_variables() if (v.name.endswith("_w:0"))]
        for v in lay_name:
            print(v)
            curLay = [a for a in tf.trainable_variables() if (a.name==v)]
            wt = curLay[0].eval()
            print("np:",np.where(wt!=0)[0].shape)
            ind = tf.where(tf.not_equal(wt, 0))
            sparse = tf.SparseTensor(ind, tf.gather_nd(wt, ind), curLay[0].get_shape())
            tmp = sess.run(sparse)
            valName = outDir+v+"spVal.npy"
            print(valName)
            with open(valName,'wb') as f:
                np.save(f,tmp[1])
            valName = outDir+v+"spMatSize.npy"
            print(valName)
            with open(valName,'wb') as f:
                np.save(f,tmp[2])
            print("tmp",[tmp[0].shape,tmp[0].dtype,tmp[1].shape,tmp[2]])
            indMat64 = tmp[0]
            castIndMat64 = tf.cast(indMat64,tf.uint16)
            indMat16 = sess.run(castIndMat64)
            print("intMat16:",[indMat16.shape,indMat16.dtype])
            valName = outDir+v+"spInd16.npy"
            print(valName)
            with open(valName,'wb') as f:
                np.save(f,tmp[0])
项目:hdrnet_legacy    作者:mgharbi    | 项目源码 | 文件源码
def _produce_one_sample(self):
    dirname = os.path.dirname(self.path)
    if not check_dir(dirname):
      raise ValueError("Invalid data path.")
    with open(self.path, 'r') as fid:
      flist = [l.strip() for l in fid.xreadlines()]

    if self.shuffle:
      random.shuffle(flist)

    input_files = [os.path.join(dirname, 'input', f) for f in flist]
    output_files = [os.path.join(dirname, 'output', f) for f in flist]

    self.nsamples = len(input_files)

    input_queue, output_queue = tf.train.slice_input_producer(
        [input_files, output_files], shuffle=self.shuffle,
        seed=0123, num_epochs=self.num_epochs)

    if '16-bit' in magic.from_file(input_files[0]):
      input_dtype = tf.uint16
      input_wl = 65535.0
    else:
      input_wl = 255.0
      input_dtype = tf.uint8
    if '16-bit' in magic.from_file(output_files[0]):
      output_dtype = tf.uint16
      output_wl = 65535.0
    else:
      output_wl = 255.0
      output_dtype = tf.uint8

    input_file = tf.read_file(input_queue)
    output_file = tf.read_file(output_queue)

    if os.path.splitext(input_files[0])[-1] == '.jpg': 
      im_input = tf.image.decode_jpeg(input_file, channels=3)
    else:
      im_input = tf.image.decode_png(input_file, dtype=input_dtype, channels=3)

    if os.path.splitext(output_files[0])[-1] == '.jpg': 
      im_output = tf.image.decode_jpeg(output_file, channels=3)
    else:
      im_output = tf.image.decode_png(output_file, dtype=output_dtype, channels=3)

    # normalize input/output
    sample = {}
    with tf.name_scope('normalize_images'):
      im_input = tf.to_float(im_input)/input_wl
      im_output = tf.to_float(im_output)/output_wl

    inout = tf.concat([im_input, im_output], 2)
    fullres, inout = self._augment_data(inout, 6)

    sample['lowres_input'] = inout[:, :, :3]
    sample['lowres_output'] = inout[:, :, 3:]
    sample['image_input'] = fullres[:, :, :3]
    sample['image_output'] = fullres[:, :, 3:]
    return sample
项目:hdrnet    作者:google    | 项目源码 | 文件源码
def _produce_one_sample(self):
    dirname = os.path.dirname(self.path)
    if not check_dir(dirname):
      raise ValueError("Invalid data path.")
    with open(self.path, 'r') as fid:
      flist = [l.strip() for l in fid.xreadlines()]

    if self.shuffle:
      random.shuffle(flist)

    input_files = [os.path.join(dirname, 'input', f) for f in flist]
    output_files = [os.path.join(dirname, 'output', f) for f in flist]

    self.nsamples = len(input_files)

    input_queue, output_queue = tf.train.slice_input_producer(
        [input_files, output_files], shuffle=self.shuffle,
        seed=0123, num_epochs=self.num_epochs)

    if '16-bit' in magic.from_file(input_files[0]):
      input_dtype = tf.uint16
      input_wl = 65535.0
    else:
      input_wl = 255.0
      input_dtype = tf.uint8
    if '16-bit' in magic.from_file(output_files[0]):
      output_dtype = tf.uint16
      output_wl = 65535.0
    else:
      output_wl = 255.0
      output_dtype = tf.uint8

    input_file = tf.read_file(input_queue)
    output_file = tf.read_file(output_queue)

    if os.path.splitext(input_files[0])[-1] == '.jpg': 
      im_input = tf.image.decode_jpeg(input_file, channels=3)
    else:
      im_input = tf.image.decode_png(input_file, dtype=input_dtype, channels=3)

    if os.path.splitext(output_files[0])[-1] == '.jpg': 
      im_output = tf.image.decode_jpeg(output_file, channels=3)
    else:
      im_output = tf.image.decode_png(output_file, dtype=output_dtype, channels=3)

    # normalize input/output
    sample = {}
    with tf.name_scope('normalize_images'):
      im_input = tf.to_float(im_input)/input_wl
      im_output = tf.to_float(im_output)/output_wl

    inout = tf.concat([im_input, im_output], 2)
    fullres, inout = self._augment_data(inout, 6)

    sample['lowres_input'] = inout[:, :, :3]
    sample['lowres_output'] = inout[:, :, 3:]
    sample['image_input'] = fullres[:, :, :3]
    sample['image_output'] = fullres[:, :, 3:]
    return sample
项目:monodepth360    作者:srijanparmeshwar    | 项目源码 | 文件源码
def convert():
    focal_length = 532.740352
    width = 1280
    height = 760

    pad_width = int(focal_length * 2.0)
    pad_height = int(focal_length * 2.0)

    tf_rgb_filenames = tf.placeholder(tf.string, [4])
    tf_depth_filenames = tf.placeholder(tf.string, [4])
    rgbs = [tf_read_png(tf_rgb_filenames[index]) for index in range(4)]
    depths = [tf_read_raw(tf_depth_filenames[index])[:, :, :, 0:1] for index in range(4)]
    rgbs.extend([tf.zeros([1, height, width, 3], tf.float32) for _ in range(2)])
    depths.extend([tf.zeros([1, height, width, 1], tf.uint16) for _ in range(2)])

    cubic_rgbs = [pad_and_crop(rgb, width, height, pad_width, pad_height) for rgb in rgbs]
    cubic_depths = [pad_and_crop(tf.cast(depth, tf.float32), width, height, pad_width, pad_height) for depth in depths]
    cubic_depths = [backproject_cubic_depth(cubic_depths[index], [1, pad_height, pad_width], face_map[index]) for index in range(6)]

    tf_equirectangular_rgb = encode_image(cubic_to_equirectangular(cubic_rgbs, [256, 512]), "png")
    tf_equirectangular_depth = cubic_to_equirectangular(cubic_depths, [256, 512])
    tf_preview_depth = encode_image(tf.log(1.0 + tf_equirectangular_depth), "png")
    tf_equirectangular_depth = tf.squeeze(tf_equirectangular_depth[:, :, :, 0])

    session = tf.Session()

    if not os.path.exists(os.path.join(arguments.output_path, "rgb")):
        os.makedirs(os.path.join(arguments.output_path, "rgb"))
    if not os.path.exists(os.path.join(arguments.output_path, "depth")):
        os.makedirs(os.path.join(arguments.output_path, "depth"))
    if not os.path.exists(os.path.join(arguments.output_path, "preview")):
        os.makedirs(os.path.join(arguments.output_path, "preview"))

    for index in range(arguments.frames):
        rgb_filenames = [os.path.join(arguments.input_rgb, face, "{:06}.png".format(index)) for face in arguments.faces.split(",")]
        depth_filenames = [os.path.join(arguments.input_depth, face, "{:06}.png".format(index)) for face in arguments.faces.split(",")]

        if arguments.preview:
            equirectangular_rgb, equirectangular_depth, preview_depth = session.run([tf_equirectangular_rgb, tf_equirectangular_depth, tf_preview_depth],
                                           feed_dict = {tf_rgb_filenames: rgb_filenames, tf_depth_filenames: depth_filenames})
            write_image(equirectangular_rgb, os.path.join(arguments.output_path, "rgb", "{:06}.png".format(index)))
            write_image(preview_depth, os.path.join(arguments.output_path, "preview", "{:06}.png".format(index)))
            np.save(os.path.join(arguments.output_path, "depth", "{:06}.npy".format(index)), equirectangular_depth)
        else:
            equirectangular_rgb, equirectangular_depth = session.run([tf_equirectangular_rgb, tf_equirectangular_depth],
                                           feed_dict = {tf_rgb_filenames: rgb_filenames, tf_depth_filenames: depth_filenames})
            write_image(equirectangular_rgb, os.path.join(arguments.output_path, "rgb", "{:06}.png".format(index)))
            np.save(os.path.join(arguments.output_path, "depth", "{:06}.npy".format(index)), equirectangular_depth)
项目:Bayesian-FlowNet    作者:Johswald    | 项目源码 | 文件源码
def get_data_kitti(datadir, shuffle_all, batchs):
    """Construct input data lists for Kitti 2012 Evaluation"""

    sintel_imgs_1 = "image_2_crop/"
    sintel_flows = "flow_occ_crop/"
    with tf.name_scope('Input'):
        # after number 154 image sizes change
        list_0 = sorted(glob.glob(datadir + sintel_imgs_1 + '/*10.png'))
        list_1 = sorted(glob.glob(datadir + sintel_imgs_1 + '/*11.png'))
        flow_list = sorted(glob.glob(datadir + sintel_flows + '/*.png'))
        print(len(list_0), len(list_1), len(flow_list))
        print("Number of input length: " + str(len(list_0)))
        assert len(list_0) == len(list_1) == len(
            flow_list) != 0, ('Input Lengths not correct')

        if shuffle_all:
            p = np.random.permutation(len(list_0))
        else:
            p = np.arange(len(list_0))
        list_0 = [list_0[i] for i in p]
        list_1 = [list_1[i] for i in p]
        flow_list = [flow_list[i] for i in p]

        input_queue = tf.train.slice_input_producer(
            [list_0, list_1, flow_list],
            shuffle=False)  # shuffled before
        # image reader
        content_0 = tf.read_file(input_queue[0])
        content_1 = tf.read_file(input_queue[1])
        content_flow = tf.read_file(input_queue[2])

        imgs_0 = tf.image.decode_png(content_0, channels=3)
        imgs_1 = tf.image.decode_png(content_1, channels=3)
        imgs_0 = tf.image.convert_image_dtype(imgs_0, dtype=tf.float32)
        imgs_1 = tf.image.convert_image_dtype(imgs_1, dtype=tf.float32)
        flows = tf.cast(tf.image.decode_png(
            content_flow, channels=3, dtype=tf.uint16), tf.float32)
        # set shape

        imgs_0.set_shape(FLAGS.img_shape)
        imgs_1.set_shape(FLAGS.img_shape)
        flows.set_shape(FLAGS.img_shape)

        return tf.train.batch([imgs_0, imgs_1, flows],
                              batch_size=batchs
                              #,num_threads=1
                              )