Python tensorflow 模块,arg_min() 实例源码

我们从Python开源项目中,提取了以下2个代码示例,用于说明如何使用tensorflow.arg_min()

项目:TF-Speech-Recognition    作者:ZhishengWang    | 项目源码 | 文件源码
def ctc_label_dense_to_sparse(labels, label_lengths, init_len):
    """
    TODO: the number of non-zeros in every row of 'labels' must less than the corresponding value in 'label_lengths'
    """
    label_shape = labels.get_shape().as_list()
    len_shape = label_lengths.get_shape().as_list()[0]
    batch = label_shape[0]
    assert(batch == len_shape)
    max_len = tf.reduce_max(init_len)

    cur_len = tf.constant(2.0)
    cur_len = tf.tile(tf.expand_dims(cur_len,axis=-1),[batch])

    mask = tf.cast(tf.sequence_mask(label_lengths,max_len), tf.int32)
    #labels_split, buf  = tf.split(labels, [max_len,-1], axis=1)
    #buf = tf.reduce_sum(buf)
    #tf.summary.scalar('buf', buf)

    labels = tf.multiply(labels, mask)
    #min_len = tf.arg_min(label_lengths, dimension=0)
    #mask = tf.fill(label_shape, 0)

    where_val = tf.less(tf.constant(0), labels)
    indices = tf.where(where_val)

    vals_sparse = tf.gather_nd(labels, indices)
    return indices, vals_sparse, tf.shape(labels), cur_len, mask
项目:MobileNet    作者:Zehaos    | 项目源码 | 文件源码
def arg_closest_anchor(bboxes, anchors):
  """Find the closest anchor. Box Format [ymin, xmin, ymax, xmax]
  """
  num_anchors = anchors.get_shape().as_list()[0]
  num_bboxes = tf.shape(bboxes)[0]

  _indices = tf.reshape(tf.range(num_bboxes), shape=[-1, 1])
  _indices = tf.reshape(tf.stack([_indices] * num_anchors, axis=1), shape=[-1, 1])
  bboxes_m = tf.gather_nd(bboxes, _indices)
  # bboxes_m = tf.Print(bboxes_m, [bboxes_m], "bboxes_m", summarize=100)

  anchors_m = tf.tile(anchors, [num_bboxes, 1])
  # anchors_m = tf.Print(anchors_m, [anchors_m], "anchors_m", summarize=100)

  square_dist = tf.squared_difference(bboxes_m[:, 0], anchors_m[:, 0]) + \
                tf.squared_difference(bboxes_m[:, 1], anchors_m[:, 1]) + \
                tf.squared_difference(bboxes_m[:, 2], anchors_m[:, 2]) + \
                tf.squared_difference(bboxes_m[:, 3], anchors_m[:, 3])

  square_dist = tf.reshape(square_dist, shape=[num_bboxes, num_anchors])

  # square_dist = tf.Print(square_dist, [square_dist], "square_dist", summarize=100)

  indices = tf.arg_min(square_dist, dimension=1)

  return indices