Python tensorflow 模块,is_variable_initialized() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用tensorflow.is_variable_initialized()

项目:cleverhans    作者:tensorflow    | 项目源码 | 文件源码
def initialize_uninitialized_global_variables(sess):
    """
    Only initializes the variables of a TensorFlow session that were not
    already initialized.
    :param sess: the TensorFlow session
    :return:
    """
    # List all global variables
    global_vars = tf.global_variables()

    # Find initialized status for all variables
    is_var_init = [tf.is_variable_initialized(var) for var in global_vars]
    is_initialized = sess.run(is_var_init)

    # List all variables that were not initialized previously
    not_initialized_vars = [var for (var, init) in
                            zip(global_vars, is_initialized) if not init]

    # Initialize all uninitialized variables found, if any
    if len(not_initialized_vars):
        sess.run(tf.variables_initializer(not_initialized_vars))
项目:image-segmentation-fcn    作者:ljanyst    | 项目源码 | 文件源码
def initialize_uninitialized_variables(sess):
    """
    Only initialize the weights that have not yet been initialized by other
    means, such as importing a metagraph and a checkpoint. It's useful when
    extending an existing model.
    """
    uninit_vars    = []
    uninit_tensors = []
    for var in tf.global_variables():
        uninit_vars.append(var)
        uninit_tensors.append(tf.is_variable_initialized(var))
    uninit_bools = sess.run(uninit_tensors)
    uninit = zip(uninit_bools, uninit_vars)
    uninit = [var for init, var in uninit if not init]
    sess.run(tf.variables_initializer(uninit))

#-------------------------------------------------------------------------------
项目:gym-extensions    作者:Breakend    | 项目源码 | 文件源码
def initialize_uninitialized(sess):
    global_vars          = tf.global_variables()
    is_not_initialized   = sess.run([tf.is_variable_initialized(var) for var in global_vars])
    not_initialized_vars = [v for (v, f) in zip(global_vars, is_not_initialized) if not f]

    print([str(i.name) for i in not_initialized_vars]) # only for testing
    if len(not_initialized_vars):
        sess.run(tf.variables_initializer(not_initialized_vars))
项目:fold    作者:tensorflow    | 项目源码 | 文件源码
def _init_uninitialized(sess):
  """Initializes all uninitialized variables and returns them as a list."""
  variables = tf.global_variables()
  if not variables: return []  # sess.run() barfs on empty list
  is_initialized = sess.run([tf.is_variable_initialized(v) for v in variables])
  needs_init = [v for v, i in zip(variables, is_initialized) if not i]
  if not needs_init: return []
  sess.run(tf.variables_initializer(needs_init))
  return needs_init
项目:complex_tf    作者:woodshop    | 项目源码 | 文件源码
def testIsVariableInitialized(self):
    for use_gpu in [True, False]:
      with self.test_session(use_gpu=use_gpu):
        v0 = state_ops.variable_op([1, 2], tf.complex64)
        self.assertEqual(False, tf.is_variable_initialized(v0).eval())
        tf.assign(v0, [[2.0+3.0j, 3.0+2.0j]]).eval()
        self.assertEqual(True, tf.is_variable_initialized(v0).eval())
项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def _build(self):
        tensor = self._build_parameter()
        self._dataholder_tensor = tensor
        self._is_initialized_tensor = tf.is_variable_initialized(tensor)
项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def _build(self):
        unconstrained = self._build_parameter()
        constrained = self._build_constrained(unconstrained)
        prior = self._build_prior(unconstrained, constrained)

        self._is_initialized_tensor = tf.is_variable_initialized(unconstrained)
        self._unconstrained_tensor = unconstrained
        self._constrained_tensor = constrained
        self._prior_tensor = prior
项目:Attention-DQN    作者:chasewind007    | 项目源码 | 文件源码
def get_uninitialized_variables(variables=None):
    """Return a list of uninitialized tf variables.

    Parameters
    ----------
    variables: tf.Variable, list(tf.Variable), optional
      Filter variable list to only those that are uninitialized. If no
      variables are specified the list of all variables in the graph
      will be used.

    Returns
    -------
    list(tf.Variable)
      List of uninitialized tf variables.
    """
    sess = tf.get_default_session()
    if variables is None:
        variables = tf.global_variables()
    else:
        variables = list(variables)

    if len(variables) == 0:
        return []

    if semver.match(tf.__version__, '<1.0.0'):
        init_flag = sess.run(
            tf.pack([tf.is_variable_initialized(v) for v in variables]))
    else:
        init_flag = sess.run(
            tf.stack([tf.is_variable_initialized(v) for v in variables]))
    return [v for v, f in zip(variables, init_flag) if not f]
项目:Atari-Game-with-DQN    作者:tonyabracadabra    | 项目源码 | 文件源码
def get_uninitialized_variables(variables=None):
    """Return a list of uninitialized tf variables.

    Parameters
    ----------
    variables: tf.Variable, list(tf.Variable), optional
      Filter variable list to only those that are uninitialized. If no
      variables are specified the list of all variables in the graph
      will be used.

    Returns
    -------
    list(tf.Variable)
      List of uninitialized tf variables.
    """
    sess = tf.get_default_session()
    if variables is None:
        variables = tf.global_variables()
    else:
        variables = list(variables)

    if len(variables) == 0:
        return []

    if semver.match(tf.__version__, '<1.0.0'):
        init_flag = sess.run(
            tf.pack([tf.is_variable_initialized(v) for v in variables]))
    else:
        init_flag = sess.run(
            tf.stack([tf.is_variable_initialized(v) for v in variables]))

    return [v for v, f in zip(variables, init_flag) if not f]


# Tears of the debugging...
项目:Atari-Game-with-DQN    作者:tonyabracadabra    | 项目源码 | 文件源码
def get_uninitialized_variables(variables=None):
    """Return a list of uninitialized tf variables.

    Parameters
    ----------
    variables: tf.Variable, list(tf.Variable), optional
      Filter variable list to only those that are uninitialized. If no
      variables are specified the list of all variables in the graph
      will be used.

    Returns
    -------
    list(tf.Variable)
      List of uninitialized tf variables.
    """
    sess = tf.get_default_session()
    if variables is None:
        variables = tf.global_variables()
    else:
        variables = list(variables)

    if len(variables) == 0:
        return []

    if semver.match(tf.__version__, '<1.0.0'):
        init_flag = sess.run(
            tf.pack([tf.is_variable_initialized(v) for v in variables]))
    else:
        init_flag = sess.run(
            tf.stack([tf.is_variable_initialized(v) for v in variables]))

    return [v for v, f in zip(variables, init_flag) if not f]


# Tears of the debugging...