Python tensorflow 模块,matrix_determinant() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用tensorflow.matrix_determinant()

项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def exKxz_pairwise(self, Z, Xmu, Xcov):
        """
        <x_t K_{x_{t-1}, Z}>_q_{x_{t-1:t}}
        :param Z: MxD inducing inputs
        :param Xmu: X mean (N+1xD)
        :param Xcov: 2x(N+1)xDxD
        :return: NxMxD
        """

        msg_input_shape = "Currently cannot handle slicing in exKxz_pairwise."
        assert_input_shape = tf.assert_equal(tf.shape(Xmu)[1], self.input_dim, message=msg_input_shape)
        assert_cov_shape = tf.assert_equal(tf.shape(Xmu), tf.shape(Xcov)[1:3], name="assert_Xmu_Xcov_shape")
        with tf.control_dependencies([assert_input_shape, assert_cov_shape]):
            Xmu = tf.identity(Xmu)

        N = tf.shape(Xmu)[0] - 1
        D = tf.shape(Xmu)[1]
        Xsigmb = tf.slice(Xcov, [0, 0, 0, 0], tf.stack([-1, N, -1, -1]))
        Xsigm = Xsigmb[0, :, :, :]  # NxDxD
        Xsigmc = Xsigmb[1, :, :, :]  # NxDxD
        Xmum = tf.slice(Xmu, [0, 0], tf.stack([N, -1]))
        Xmup = Xmu[1:, :]
        lengthscales = self.lengthscales if self.ARD else tf.zeros((D,), dtype=settings.float_type) + self.lengthscales
        scalemat = tf.expand_dims(tf.matrix_diag(lengthscales ** 2.0), 0) + Xsigm  # NxDxD

        det = tf.matrix_determinant(
            tf.expand_dims(tf.eye(tf.shape(Xmu)[1], dtype=settings.float_type), 0) +
            tf.reshape(lengthscales ** -2.0, (1, 1, -1)) * Xsigm)  # N

        vec = tf.expand_dims(tf.transpose(Z), 0) - tf.expand_dims(Xmum, 2)  # NxDxM
        smIvec = tf.matrix_solve(scalemat, vec)  # NxDxM
        q = tf.reduce_sum(smIvec * vec, [1])  # NxM

        addvec = tf.matmul(smIvec, Xsigmc, transpose_a=True) + tf.expand_dims(Xmup, 1)  # NxMxD

        return self.variance * addvec * tf.reshape(det ** -0.5, (N, 1, 1)) * tf.expand_dims(tf.exp(-0.5 * q), 2)
项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def exKxz(self, Z, Xmu, Xcov):
        """
        It computes the expectation:
        <x_t K_{x_t, Z}>_q_{x_t}
        :param Z: MxD inducing inputs
        :param Xmu: X mean (NxD)
        :param Xcov: NxDxD
        :return: NxMxD
        """

        msg_input_shape = "Currently cannot handle slicing in exKxz."
        assert_input_shape = tf.assert_equal(tf.shape(Xmu)[1], self.input_dim, message=msg_input_shape)
        assert_cov_shape = tf.assert_equal(tf.shape(Xmu), tf.shape(Xcov)[:2], name="assert_Xmu_Xcov_shape")
        with tf.control_dependencies([assert_input_shape, assert_cov_shape]):
            Xmu = tf.identity(Xmu)

        N = tf.shape(Xmu)[0]
        D = tf.shape(Xmu)[1]

        lengthscales = self.lengthscales if self.ARD else tf.zeros((D,), dtype=settings.float_type) + self.lengthscales
        scalemat = tf.expand_dims(tf.matrix_diag(lengthscales ** 2.0), 0) + Xcov  # NxDxD

        det = tf.matrix_determinant(
            tf.expand_dims(tf.eye(tf.shape(Xmu)[1], dtype=settings.float_type), 0) +
            tf.reshape(lengthscales ** -2.0, (1, 1, -1)) * Xcov)  # N

        vec = tf.expand_dims(tf.transpose(Z), 0) - tf.expand_dims(Xmu, 2)  # NxDxM
        smIvec = tf.matrix_solve(scalemat, vec)  # NxDxM
        q = tf.reduce_sum(smIvec * vec, [1])  # NxM

        addvec = tf.matmul(smIvec, Xcov, transpose_a=True) + tf.expand_dims(Xmu, 1)  # NxMxD

        return self.variance * addvec * tf.reshape(det ** -0.5, (N, 1, 1)) * tf.expand_dims(tf.exp(-0.5 * q), 2)
项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def eKzxKxz(self, Z, Xmu, Xcov):
        """
        Also known as Phi_2.
        :param Z: MxD
        :param Xmu: X mean (NxD)
        :param Xcov: X covariance matrices (NxDxD)
        :return: NxMxM
        """
        # use only active dimensions
        Xcov = self._slice_cov(Xcov)
        Z, Xmu = self._slice(Z, Xmu)
        M = tf.shape(Z)[0]
        N = tf.shape(Xmu)[0]
        D = tf.shape(Xmu)[1]
        lengthscales = self.lengthscales if self.ARD else tf.zeros((D,), dtype=settings.float_type) + self.lengthscales

        Kmms = tf.sqrt(self.K(Z, presliced=True)) / self.variance ** 0.5
        scalemat = tf.expand_dims(tf.eye(D, dtype=settings.float_type), 0) + 2 * Xcov * tf.reshape(lengthscales ** -2.0, [1, 1, -1])  # NxDxD
        det = tf.matrix_determinant(scalemat)

        mat = Xcov + 0.5 * tf.expand_dims(tf.matrix_diag(lengthscales ** 2.0), 0)  # NxDxD
        cm = tf.cholesky(mat)  # NxDxD
        vec = 0.5 * (tf.reshape(tf.transpose(Z), [1, D, 1, M]) +
                     tf.reshape(tf.transpose(Z), [1, D, M, 1])) - tf.reshape(Xmu, [N, D, 1, 1])  # NxDxMxM
        svec = tf.reshape(vec, (N, D, M * M))
        ssmI_z = tf.matrix_triangular_solve(cm, svec)  # NxDx(M*M)
        smI_z = tf.reshape(ssmI_z, (N, D, M, M))  # NxDxMxM
        fs = tf.reduce_sum(tf.square(smI_z), [1])  # NxMxM

        return self.variance ** 2.0 * tf.expand_dims(Kmms, 0) * tf.exp(-0.5 * fs) * tf.reshape(det ** -0.5, [N, 1, 1])
项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def Linear_RBF_eKxzKzx(self, Ka, Kb, Z, Xmu, Xcov):
        Xcov = self._slice_cov(Xcov)
        Z, Xmu = self._slice(Z, Xmu)
        lin, rbf = (Ka, Kb) if isinstance(Ka, Linear) else (Kb, Ka)
        if not isinstance(lin, Linear):
            TypeError("{in_lin} is not {linear}".format(in_lin=str(type(lin)), linear=str(Linear)))
        if not isinstance(rbf, RBF):
            TypeError("{in_rbf} is not {rbf}".format(in_rbf=str(type(rbf)), rbf=str(RBF)))
        if lin.ARD or type(lin.active_dims) is not slice or type(rbf.active_dims) is not slice:
            raise NotImplementedError("Active dims and/or Linear ARD not implemented. "
                                      "Switching to quadrature.")
        D = tf.shape(Xmu)[1]
        M = tf.shape(Z)[0]
        N = tf.shape(Xmu)[0]

        if rbf.ARD:
            lengthscales = rbf.lengthscales
        else:
            lengthscales = tf.zeros((D, ), dtype=settings.float_type) + rbf.lengthscales

        lengthscales2 = lengthscales ** 2.0
        const = rbf.variance * lin.variance * tf.reduce_prod(lengthscales)
        gaussmat = Xcov + tf.matrix_diag(lengthscales2)[None, :, :]  # NxDxD
        det = tf.matrix_determinant(gaussmat) ** -0.5  # N

        cgm = tf.cholesky(gaussmat)  # NxDxD
        tcgm = tf.tile(cgm[:, None, :, :], [1, M, 1, 1])
        vecmin = Z[None, :, :] - Xmu[:, None, :]  # NxMxD
        d = tf.matrix_triangular_solve(tcgm, vecmin[:, :, :, None])  # NxMxDx1
        exp = tf.exp(-0.5 * tf.reduce_sum(d ** 2.0, [2, 3]))  # NxM
        # exp = tf.Print(exp, [tf.shape(exp)])

        vecplus = (Z[None, :, :, None] / lengthscales2[None, None, :, None] +
                   tf.matrix_solve(Xcov, Xmu[:, :, None])[:, None, :, :])  # NxMxDx1
        mean = tf.cholesky_solve(
            tcgm, tf.matmul(tf.tile(Xcov[:, None, :, :], [1, M, 1, 1]), vecplus))
        mean = mean[:, :, :, 0] * lengthscales2[None, None, :]  # NxMxD
        a = tf.matmul(tf.tile(Z[None, :, :], [N, 1, 1]),
                      mean * exp[:, :, None] * det[:, None, None] * const, transpose_b=True)
        return a + tf.transpose(a, [0, 2, 1])
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def test_determinants(self):
    with self.test_session():
      for batch_shape in [(), (2, 3,)]:
        for k in [1, 4]:
          operator, mat = self._build_operator_and_mat(batch_shape, k)
          expected_det = tf.matrix_determinant(mat).eval()

          self._compare_results(expected_det, operator.det())
          self._compare_results(np.log(expected_det), operator.log_det())
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def testDeterminants(self):
    with self.test_session():
      for batch_shape in [(), (2, 3,)]:
        for k in [1, 4]:
          operator, mat = self._build_operator_and_mat(batch_shape, k)
          expected_det = tf.matrix_determinant(mat).eval()

          self._compare_results(expected_det, operator.det())
          self._compare_results(np.log(expected_det), operator.log_det())
项目:tfdeploy    作者:riga    | 项目源码 | 文件源码
def test_MatrixDeterminant(self):
        t = tf.matrix_determinant(self.random(2, 3, 4, 3, 3))
        self.check(t)
项目:t3f    作者:Bihaqo    | 项目源码 | 文件源码
def determinant(kron_a):
  """Computes the determinant of a given Kronecker-factorized matrix. 

  Note, that this method can suffer from overflow.

  Args:
    kron_a: `TensorTrain` object containing a matrix of size N x N, 
    factorized into a Kronecker product of square matrices (all 
    tt-ranks are 1 and all tt-cores are square). 

  Returns:
    Number, the determinant of the given matrix.

  Raises:
    ValueError if the tt-cores of the provided matrix are not square,
    or the tt-ranks are not 1.
  """
  if not _is_kron(kron_a):
    raise ValueError('The argument should be a Kronecker product (tt-ranks '
                     'should be 1)')

  shapes_defined = kron_a.get_shape().is_fully_defined()
  if shapes_defined:
    i_shapes = kron_a.get_raw_shape()[0]
    j_shapes = kron_a.get_raw_shape()[1]
  else:
    i_shapes = ops.raw_shape(kron_a)[0]
    j_shapes = ops.raw_shape(kron_a)[1]

  if shapes_defined:
    if i_shapes != j_shapes:
      raise ValueError('The argument should be a Kronecker product of square '
                       'matrices (tt-cores must be square)')

  pows = tf.cast(tf.reduce_prod(i_shapes), kron_a.dtype)
  cores = kron_a.tt_cores
  det = 1
  for core_idx in range(kron_a.ndims()):
    core = cores[core_idx]
    core_det = tf.matrix_determinant(core[0, :, :, 0])
    core_pow = pows / i_shapes[core_idx].value

    det *= tf.pow(core_det, core_pow)
  return det
项目:t3f    作者:Bihaqo    | 项目源码 | 文件源码
def slog_determinant(kron_a):
  """Computes the sign and log-det of a given Kronecker-factorized matrix.

  Args:
    kron_a: `TensorTrain` object containing a matrix of size N x N, 
    factorized into a Kronecker product of square matrices (all 
    tt-ranks are 1 and all tt-cores are square).

  Returns:
    Two numbers, sign of the determinant and the log-determinant of the given 
    matrix. If the determinant is zero, then sign will be 0 and logdet will be
    -Inf. In all cases, the determinant is equal to sign * np.exp(logdet).

  Raises:
    ValueError if the tt-cores of the provided matrix are not square,
    or the tt-ranks are not 1.
  """
  if not _is_kron(kron_a):
    raise ValueError('The argument should be a Kronecker product ' 
                     '(tt-ranks should be 1)')

  shapes_defined = kron_a.get_shape().is_fully_defined()
  if shapes_defined:
    i_shapes = kron_a.get_raw_shape()[0]
    j_shapes = kron_a.get_raw_shape()[1]
  else:
    i_shapes = ops.raw_shape(kron_a)[0]
    j_shapes = ops.raw_shape(kron_a)[1]

  if shapes_defined:
    if i_shapes != j_shapes:
      raise ValueError('The argument should be a Kronecker product of square '
                       'matrices (tt-cores must be square)')
  pows = tf.cast(tf.reduce_prod(i_shapes), kron_a.dtype)

  logdet = 0.
  det_sign = 1.
  for core_idx in range(kron_a.ndims()):
    core = kron_a.tt_cores[core_idx]
    core_det = tf.matrix_determinant(core[0, :, :, 0])
    core_abs_det = tf.abs(core_det)
    core_det_sign = tf.sign(core_det)
    core_pow = pows / i_shapes[core_idx].value
    logdet += tf.log(core_abs_det) * core_pow
    det_sign *= core_det_sign**(core_pow)


  return det_sign, logdet