我们从Python开源项目中,提取了以下1个代码示例,用于说明如何使用tensorflow.VERSION。
def _init(self, inputs, num_outputs, options): use_tf100_api = (distutils.version.LooseVersion(tf.VERSION) >= distutils.version.LooseVersion("1.0.0")) self.x = x = inputs for i in range(4): x = tf.nn.elu(conv2d(x, 32, "l{}".format(i + 1), [3, 3], [2, 2])) # Introduce a "fake" batch dimension of 1 after flatten so that we can # do LSTM over the time dim. x = tf.expand_dims(flatten(x), [0]) size = 256 if use_tf100_api: lstm = rnn.BasicLSTMCell(size, state_is_tuple=True) else: lstm = rnn.rnn_cell.BasicLSTMCell(size, state_is_tuple=True) step_size = tf.shape(self.x)[:1] c_init = np.zeros((1, lstm.state_size.c), np.float32) h_init = np.zeros((1, lstm.state_size.h), np.float32) self.state_init = [c_init, h_init] c_in = tf.placeholder(tf.float32, [1, lstm.state_size.c]) h_in = tf.placeholder(tf.float32, [1, lstm.state_size.h]) self.state_in = [c_in, h_in] if use_tf100_api: state_in = rnn.LSTMStateTuple(c_in, h_in) else: state_in = rnn.rnn_cell.LSTMStateTuple(c_in, h_in) lstm_out, lstm_state = tf.nn.dynamic_rnn(lstm, x, initial_state=state_in, sequence_length=step_size, time_major=False) lstm_c, lstm_h = lstm_state x = tf.reshape(lstm_out, [-1, size]) logits = linear(x, num_outputs, "action", normc_initializer(0.01)) self.state_out = [lstm_c[:1, :], lstm_h[:1, :]] return logits, x