Python tensorflow 模块,foldl() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用tensorflow.foldl()

项目:tensor2tensor    作者:tensorflow    | 项目源码 | 文件源码
def neural_gpu_body(inputs, hparams, name=None):
  """The core Neural GPU."""
  with tf.variable_scope(name, "neural_gpu"):

    def step(state, inp):  # pylint: disable=missing-docstring
      x = tf.nn.dropout(state, 1.0 - hparams.dropout)
      for layer in xrange(hparams.num_hidden_layers):
        x = common_layers.conv_gru(
            x, (hparams.kernel_height, hparams.kernel_width),
            hparams.hidden_size,
            name="cgru_%d" % layer)
      # Padding input is zeroed-out in the modality, we check this by summing.
      padding_inp = tf.less(tf.reduce_sum(tf.abs(inp), axis=[1, 2]), 0.00001)
      new_state = tf.where(padding_inp, state, x)  # No-op where inp is padding.
      return new_state

    return tf.foldl(
        step,
        tf.transpose(inputs, [1, 0, 2, 3]),
        initializer=inputs,
        parallel_iterations=1,
        swap_memory=True)
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def foldl(fn, elems, initializer=None, name=None):
    '''Reduce elems using fn to combine them from left to right.

    # Arguments
        fn: Callable that will be called upon each element in elems and an
            accumulator, for instance lambda acc, x: acc + x
        elems: tensor
        initializer: The first value used (elems[0] in case of None)
        name: A string name for the foldl node in the graph

    # Returns
        Same type and shape as initializer
    '''
    return tf.foldl(fn, elems, initializer=initializer, name=name)
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def foldl(fn, elems, initializer=None, name=None):
    """Reduce elems using fn to combine them from left to right.

    # Arguments
        fn: Callable that will be called upon each element in elems and an
            accumulator, for instance `lambda acc, x: acc + x`
        elems: tensor
        initializer: The first value used (`elems[0]` in case of None)
        name: A string name for the foldl node in the graph

    # Returns
        Same type and shape as initializer
    """
    return tf.foldl(fn, elems, initializer=initializer, name=name)
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def foldl(fn, elems, initializer=None, name=None):
    '''Reduce elems using fn to combine them from left to right.

    # Arguments
        fn: Callable that will be called upon each element in elems and an
            accumulator, for instance lambda acc, x: acc + x
        elems: tensor
        initializer: The first value used (elems[0] in case of None)
        name: A string name for the foldl node in the graph

    # Returns
        Same type and shape as initializer
    '''
    return tf.foldl(fn, elems, initializer=initializer, name=name)
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def foldl(fn, elems, initializer=None, name=None):
    """Reduce elems using fn to combine them from left to right.

    # Arguments
        fn: Callable that will be called upon each element in elems and an
            accumulator, for instance `lambda acc, x: acc + x`
        elems: tensor
        initializer: The first value used (`elems[0]` in case of None)
        name: A string name for the foldl node in the graph

    # Returns
        Same type and shape as initializer
    """
    return tf.foldl(fn, elems, initializer=initializer, name=name)
项目:keras_superpixel_pooling    作者:parag2489    | 项目源码 | 文件源码
def foldl(fn, elems, initializer=None, name=None):
    """Reduce elems using fn to combine them from left to right.

    # Arguments
        fn: Callable that will be called upon each element in elems and an
            accumulator, for instance `lambda acc, x: acc + x`
        elems: tensor
        initializer: The first value used (`elems[0]` in case of None)
        name: A string name for the foldl node in the graph

    # Returns
        Tensor with same type and shape as `initializer`.
    """
    return tf.foldl(fn, elems, initializer=initializer, name=name)
项目:sktacc    作者:jclee81    | 项目源码 | 文件源码
def _calculate_average_and_put(self, group_id, item, m):
        keys = item['keys']
        tf.reset_default_graph()
        sess = tf.Session()
        new_vars = []

        m_cal_and_put = SimpleMeasurement('cal_and_put', m)

        m_init = SimpleMeasurement('init', m)
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
        m_init.end_measure()

        for v in item['variables']:
            count = 0
            name = 'average_%s' % v
            ts = []
            for key in keys:
                raw = self.rc.get(key)
                # TODO: check raw is not None
                util.restore_graph(key, raw)
                g = sess.graph
                t = g.get_tensor_by_name('%s/%s:0' % (key, v))
                ts.append(t)
                count += 1

            m_cal = SimpleMeasurement('cal', m)
            avg = tf.foldl(tf.add, ts) / count
            new_var = tf.Variable(avg, name=name)
            sess.run(new_var.initializer)
            sess.run(new_var)
            new_vars.append(name)
            m_cal.end_measure()

        g = sess.graph
        g_def = g.as_graph_def()
        constants = graph_util.convert_variables_to_constants(
            sess, g_def, new_vars)
        s = constants.SerializeToString()
        self.rc.set(group_id, s)
        sess.close()

        m_cal_and_put.end_measure()