Python tensorflow 模块,SessionLog() 实例源码

我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用tensorflow.SessionLog()

项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def testSessionLogStartMessageDiscardsExpiredEvents(self):
    """Test that SessionLog.START message discards expired events.

    This discard logic is preferred over the out-of-order step discard logic,
    but this logic can only be used for event protos which have the SessionLog
    enum, which was introduced to event.proto for file_version >= brain.Event:2.
    """
    gen = _EventGenerator(self)
    acc = ea.EventAccumulator(gen)
    gen.AddEvent(tf.Event(wall_time=0, step=1, file_version='brain.Event:2'))

    gen.AddScalarTensor('s1', wall_time=1, step=100, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=200, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=300, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=400, value=20)

    gen.AddScalarTensor('s2', wall_time=1, step=202, value=20)
    gen.AddScalarTensor('s2', wall_time=1, step=203, value=20)

    slog = tf.SessionLog(status=tf.SessionLog.START)
    gen.AddEvent(tf.Event(wall_time=2, step=201, session_log=slog))
    acc.Reload()
    self.assertEqual([x.step for x in acc.Tensors('s1')], [100, 200])
    self.assertEqual([x.step for x in acc.Tensors('s2')], [])
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def testSessionLogStartMessageDiscardsExpiredEvents(self):
    """Test that SessionLog.START message discards expired events.

    This discard logic is preferred over the out-of-order step discard logic,
    but this logic can only be used for event protos which have the SessionLog
    enum, which was introduced to event.proto for file_version >= brain.Event:2.
    """
    gen = _EventGenerator(self)
    acc = ea.EventAccumulator(gen)
    gen.AddEvent(tf.Event(wall_time=0, step=1, file_version='brain.Event:2'))

    gen.AddScalar('s1', wall_time=1, step=100, value=20)
    gen.AddScalar('s1', wall_time=1, step=200, value=20)
    gen.AddScalar('s1', wall_time=1, step=300, value=20)
    gen.AddScalar('s1', wall_time=1, step=400, value=20)

    gen.AddScalar('s2', wall_time=1, step=202, value=20)
    gen.AddScalar('s2', wall_time=1, step=203, value=20)

    slog = tf.SessionLog(status=tf.SessionLog.START)
    gen.AddEvent(tf.Event(wall_time=2, step=201, session_log=slog))
    acc.Reload()
    self.assertEqual([x.step for x in acc.Scalars('s1')], [100, 200])
    self.assertEqual([x.step for x in acc.Scalars('s2')], [])
项目:tensorflow-layer-library    作者:bioinf-jku    | 项目源码 | 文件源码
def initialize_tf_variables(self):
        """
        Initialize tensorflow variables (either initializes them from scratch or restores from checkpoint).

        :return: updated TeLL session
        """
        session = self.tf_session
        checkpoint = self.workspace.get_checkpoint()
        #
        # Initialize or load variables
        #
        with Timer(name="Initializing variables"):
            session.run(tf.global_variables_initializer())
            session.run(tf.local_variables_initializer())

        if checkpoint is not None:
            # restore from checkpoint
            self.tf_saver.restore(session, checkpoint)
            # get step number from checkpoint
            step = session.run(self.__global_step_placeholder) + 1
            self.global_step = step
            # reopen summaries
            for _, summary in self.tf_summaries.items():
                summary.reopen()
                summary.add_session_log(tf.SessionLog(status=tf.SessionLog.START), global_step=step)
            print("Resuming from checkpoint '{}' at iteration {}".format(checkpoint, step))
        else:
            for _, summary in self.tf_summaries.items():
                summary.add_graph(session.graph)

        return self
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def testExpiredDataDiscardedAfterRestartForFileVersionLessThan2(self):
    """Tests that events are discarded after a restart is detected.

    If a step value is observed to be lower than what was previously seen,
    this should force a discard of all previous items with the same tag
    that are outdated.

    Only file versions < 2 use this out-of-order discard logic. Later versions
    discard events based on the step value of SessionLog.START.
    """
    warnings = []
    self.stubs.Set(tf.logging, 'warn', warnings.append)

    gen = _EventGenerator(self)
    acc = ea.EventAccumulator(gen)

    gen.AddEvent(tf.Event(wall_time=0, step=0, file_version='brain.Event:1'))
    gen.AddScalarTensor('s1', wall_time=1, step=100, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=200, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=300, value=20)
    acc.Reload()
    ## Check that number of items are what they should be
    self.assertEqual([x.step for x in acc.Tensors('s1')], [100, 200, 300])

    gen.AddScalarTensor('s1', wall_time=1, step=101, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=201, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=301, value=20)
    acc.Reload()
    ## Check that we have discarded 200 and 300 from s1
    self.assertEqual([x.step for x in acc.Tensors('s1')], [100, 101, 201, 301])
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def testEventsDiscardedPerTagAfterRestartForFileVersionLessThan2(self):
    """Tests that event discards after restart, only affect the misordered tag.

    If a step value is observed to be lower than what was previously seen,
    this should force a discard of all previous items that are outdated, but
    only for the out of order tag. Other tags should remain unaffected.

    Only file versions < 2 use this out-of-order discard logic. Later versions
    discard events based on the step value of SessionLog.START.
    """
    warnings = []
    self.stubs.Set(tf.logging, 'warn', warnings.append)

    gen = _EventGenerator(self)
    acc = ea.EventAccumulator(gen)

    gen.AddEvent(tf.Event(wall_time=0, step=0, file_version='brain.Event:1'))
    gen.AddScalarTensor('s1', wall_time=1, step=100, value=20)
    gen.AddScalarTensor('s2', wall_time=1, step=101, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=200, value=20)
    gen.AddScalarTensor('s2', wall_time=1, step=201, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=300, value=20)
    gen.AddScalarTensor('s2', wall_time=1, step=301, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=101, value=20)
    gen.AddScalarTensor('s3', wall_time=1, step=101, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=201, value=20)
    gen.AddScalarTensor('s1', wall_time=1, step=301, value=20)

    acc.Reload()
    ## Check that we have discarded 200 and 300 for s1
    self.assertEqual([x.step for x in acc.Tensors('s1')], [100, 101, 201, 301])

    ## Check that s1 discards do not affect s2 (written before out-of-order)
    ## or s3 (written after out-of-order).
    ## i.e. check that only events from the out of order tag are discarded
    self.assertEqual([x.step for x in acc.Tensors('s2')], [101, 201, 301])
    self.assertEqual([x.step for x in acc.Tensors('s3')], [101])
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def testSessionLogSummaries(self):
    data = [
        {
            'session_log': tf.SessionLog(status=tf.SessionLog.START),
            'step': 0
        },
        {
            'session_log': tf.SessionLog(status=tf.SessionLog.CHECKPOINT),
            'step': 1
        },
        {
            'session_log': tf.SessionLog(status=tf.SessionLog.CHECKPOINT),
            'step': 2
        },
        {
            'session_log': tf.SessionLog(status=tf.SessionLog.CHECKPOINT),
            'step': 3
        },
        {
            'session_log': tf.SessionLog(status=tf.SessionLog.STOP),
            'step': 4
        },
        {
            'session_log': tf.SessionLog(status=tf.SessionLog.START),
            'step': 5
        },
        {
            'session_log': tf.SessionLog(status=tf.SessionLog.STOP),
            'step': 6
        },
    ]

    self._WriteScalarSummaries(data)
    units = efi.get_inspection_units(self.logdir)
    self.assertEqual(1, len(units))
    printable = efi.get_dict_to_print(units[0].field_to_obs)
    self.assertEqual(printable['sessionlog:start']['steps'], [0, 5])
    self.assertEqual(printable['sessionlog:stop']['steps'], [4, 6])
    self.assertEqual(printable['sessionlog:checkpoint']['num_steps'], 3)
项目:tensorboard    作者:tensorflow    | 项目源码 | 文件源码
def testExpiredDataDiscardedAfterRestartForFileVersionLessThan2(self):
    """Tests that events are discarded after a restart is detected.

    If a step value is observed to be lower than what was previously seen,
    this should force a discard of all previous items with the same tag
    that are outdated.

    Only file versions < 2 use this out-of-order discard logic. Later versions
    discard events based on the step value of SessionLog.START.
    """
    warnings = []
    self.stubs.Set(tf.logging, 'warn', warnings.append)

    gen = _EventGenerator(self)
    acc = ea.EventAccumulator(gen)

    gen.AddEvent(tf.Event(wall_time=0, step=0, file_version='brain.Event:1'))
    gen.AddScalar('s1', wall_time=1, step=100, value=20)
    gen.AddScalar('s1', wall_time=1, step=200, value=20)
    gen.AddScalar('s1', wall_time=1, step=300, value=20)
    acc.Reload()
    ## Check that number of items are what they should be
    self.assertEqual([x.step for x in acc.Scalars('s1')], [100, 200, 300])

    gen.AddScalar('s1', wall_time=1, step=101, value=20)
    gen.AddScalar('s1', wall_time=1, step=201, value=20)
    gen.AddScalar('s1', wall_time=1, step=301, value=20)
    acc.Reload()
    ## Check that we have discarded 200 and 300 from s1
    self.assertEqual([x.step for x in acc.Scalars('s1')], [100, 101, 201, 301])
项目:ml_gans    作者:imironhead    | 项目源码 | 文件源码
def train():
    """
    """
    ckpt_source_path = tf.train.latest_checkpoint(FLAGS.ckpt_dir_path)

    xx_real = build_image_batch_reader(
        FLAGS.x_images_dir_path, FLAGS.batch_size)

    yy_real = build_image_batch_reader(
        FLAGS.y_images_dir_path, FLAGS.batch_size)

    image_pool = {}

    model = build_cycle_gan(xx_real, yy_real, '')

    summaries = build_summaries(model)

    reporter = tf.summary.FileWriter(FLAGS.logs_dir_path)

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        session.run(tf.local_variables_initializer())

        if ckpt_source_path is not None:
            tf.train.Saver().restore(session, ckpt_source_path)

        # give up overlapped old data
        step = session.run(model['step'])

        reporter.add_session_log(
            tf.SessionLog(status=tf.SessionLog.START),
            global_step=step)

        # make dataset reader work
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        while train_one_step(model, summaries, image_pool, reporter):
            pass

        coord.request_stop()
        coord.join(threads)