我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用tensorflow.tan()。
def testCplxTanGPU(self): shapes = [(5,4,3), (5,4), (5,), (1,)] for sh in shapes: x = ((np.random.randn(*sh) + 1j*np.random.randn(*sh)).astype(np.complex64)) self._compareGpu(x, np.tan, tf.tan)
def testCplxTanGradGPU(self): shapes = [(5,4,3), (5,4), (5,), (1,)] for sh in shapes: x = ((np.random.randn(*sh) + 1j*np.random.randn(*sh)).astype(np.complex64)) self._compareGpuGrad(x, np.tan, tf.tan)
def setUp(self): super(CoreUnaryOpsTest, self).setUp() self.ops = [ ('abs', operator.abs, tf.abs, core.abs_function), ('neg', operator.neg, tf.neg, core.neg), # TODO(shoyer): add unary + to core TensorFlow ('pos', None, None, None), ('sign', None, tf.sign, core.sign), ('reciprocal', None, tf.reciprocal, core.reciprocal), ('square', None, tf.square, core.square), ('round', None, tf.round, core.round_function), ('sqrt', None, tf.sqrt, core.sqrt), ('rsqrt', None, tf.rsqrt, core.rsqrt), ('log', None, tf.log, core.log), ('exp', None, tf.exp, core.exp), ('log', None, tf.log, core.log), ('ceil', None, tf.ceil, core.ceil), ('floor', None, tf.floor, core.floor), ('cos', None, tf.cos, core.cos), ('sin', None, tf.sin, core.sin), ('tan', None, tf.tan, core.tan), ('acos', None, tf.acos, core.acos), ('asin', None, tf.asin, core.asin), ('atan', None, tf.atan, core.atan), ('lgamma', None, tf.lgamma, core.lgamma), ('digamma', None, tf.digamma, core.digamma), ('erf', None, tf.erf, core.erf), ('erfc', None, tf.erfc, core.erfc), ('lgamma', None, tf.lgamma, core.lgamma), ] total_size = np.prod([v.size for v in self.original_lt.axes.values()]) self.test_lt = core.LabeledTensor( tf.cast(self.original_lt, tf.float32) / total_size, self.original_lt.axes)
def attenuate_rectilinear(self, K, disparity, position): S, T = lat_long_grid([tf.shape(disparity)[1], tf.shape(disparity)[2]]) _, T_grids = self.expand_grids(S, -T, tf.shape(disparity)[0]) if position == "top": attenuated_disparity = (1.0 / np.pi) * (tf.atan(disparity / K[1] + tf.tan(T_grids)) - T_grids) else: attenuated_disparity = (1.0 / np.pi) * (T_grids - tf.atan(tf.tan(T_grids) - disparity / K[1])) return tf.clip_by_value(tf.where(tf.is_finite(attenuated_disparity), attenuated_disparity, tf.zeros_like(attenuated_disparity)), 1e-6, 0.75)
def attenuate_equirectangular(self, disparity, position): S, T = lat_long_grid([tf.shape(disparity)[1], tf.shape(disparity)[2]]) _, T_grids = self.expand_grids(S, -T, tf.shape(disparity)[0]) if position == "top": attenuated_disparity = (1.0 / np.pi) * (tf.atan(tf.tan(np.pi * disparity) + tf.tan(T_grids)) - T_grids) else: attenuated_disparity = (1.0 / np.pi) * (T_grids - tf.atan(tf.tan(T_grids) - tf.tan(np.pi * disparity))) return tf.clip_by_value(tf.where(tf.is_finite(attenuated_disparity), attenuated_disparity, tf.zeros_like(attenuated_disparity)), 1e-6, 0.75)
def disparity_to_depth(self, disparity, position, epsilon = 1e-6): baseline_distance = self.params.baseline S, T = lat_long_grid([tf.shape(disparity)[1], tf.shape(disparity)[2]]) _, T_grids = self.expand_grids(S, -T, tf.shape(disparity)[0]) if position == "top": t1 = tf.tan(T_grids) t2 = tf.tan(T_grids + np.pi * disparity) else: t1 = tf.tan(T_grids) t2 = tf.tan(T_grids - np.pi * disparity) return baseline_distance / (tf.abs(t2 - t1) + epsilon)
def depth_to_disparity(self, depth, position): baseline_distance = self.params.baseline S, T = lat_long_grid([tf.shape(depth)[1], tf.shape(depth)[2]]) _, T_grids = self.expand_grids(S, T, tf.shape(depth)[0]) if position == "top": return self.disparity_scale * (np.pi / 2.0 - atan2(baseline_distance * depth, (1.0 + tf.tan(-T_grids) ** 2.0) * (depth ** 2.0) + baseline_distance * depth * tf.tan(-T_grids))) else: return self.disparity_scale * (atan2(baseline_distance * depth, (1.0 + tf.tan(-T_grids) ** 2.0) * (depth ** 2.0) - baseline_distance * depth * tf.tan(-T_grids)) - np.pi / 2.0)
def backproject(S, T, depth): # Convert to Cartesian for modified depth input. # depth = sqrt(x^2 + z^2). x = depth * tf.sin(S) y = depth * tf.tan(T) z = depth * tf.cos(S) return x, y, z
def test_Tan(self): t = tf.tan(self.random(4, 3)) self.check(t)