Python tensorflow 模块,reverse_v2() 实例源码

我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用tensorflow.reverse_v2()

项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def reverse(x, axes):
    """Reverse a tensor along the the specified axes

    # Returns
        A tensor.
    """
    if isinstance(axes, int):
        axes = [axes]
    try:
        return tf.reverse_v2(x, axes)
    except AttributeError:
        # Older TF versions.
        dims = [True if i in axes else False for i in range(len(x.get_shape()._dims))]
        return tf.reverse(x, dims)


# VALUE MANIPULATION
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def reverse(x, axes):
    """Reverse a tensor along the the specified axes

    # Returns
        A tensor.
    """
    if isinstance(axes, int):
        axes = [axes]
    try:
        return tf.reverse_v2(x, axes)
    except AttributeError:
        # Older TF versions.
        dims = [True if i in axes else False for i in range(len(x.get_shape()._dims))]
        return tf.reverse(x, dims)


# VALUE MANIPULATION
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def ndlstm_base_dynamic(inputs, noutput, scope=None, reverse=False):
  """Run an LSTM, either forward or backward.

  This is a 1D LSTM implementation using dynamic_rnn and
  the TensorFlow LSTM op.

  Args:
    inputs: input sequence (length, batch_size, ninput)
    noutput: depth of output
    scope: optional scope name
    reverse: run LSTM in reverse

  Returns:
    Output sequence (length, batch_size, noutput)
  """
  with tf.variable_scope(scope, "SeqLstm", [inputs]):
    # TODO(tmb) make batch size, sequence_length dynamic
    # example: sequence_length = tf.shape(inputs)[0]
    _, batch_size, _ = _shape(inputs)
    lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(noutput, state_is_tuple=False)
    state = tf.zeros([batch_size, lstm_cell.state_size])
    sequence_length = int(inputs.get_shape()[0])
    sequence_lengths = tf.to_int64(tf.fill([batch_size], sequence_length))
    if reverse:
      inputs = tf.reverse_v2(inputs, [0])
    outputs, _ = tf.nn.dynamic_rnn(lstm_cell,
                                   inputs,
                                   sequence_lengths,
                                   state,
                                   time_major=True)
    if reverse:
      outputs = tf.reverse_v2(outputs, [0])
    return outputs
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def reverse(x, axes):
    '''Reverse a tensor along the the specified axes
    '''
    if isinstance(axes, int):
        axes = [axes]
    try:
        return tf.reverse_v2(x, axes)
    except AttributeError:
        # Older TF versions.
        dims = [True if i in axes else False for i in range(len(x.get_shape()._dims))]
        return tf.reverse(x, dims)


# VALUE MANIPULATION
项目:tensorflow    作者:luyishisi    | 项目源码 | 文件源码
def sort_by_field(boxlist, field, order=SortOrder.descend, scope=None):
  """Sort boxes and associated fields according to a scalar field.

  A common use case is reordering the boxes according to descending scores.

  Args:
    boxlist: BoxList holding N boxes.
    field: A BoxList field for sorting and reordering the BoxList.
    order: (Optional) descend or ascend. Default is descend.
    scope: name scope.

  Returns:
    sorted_boxlist: A sorted BoxList with the field in the specified order.

  Raises:
    ValueError: if specified field does not exist
    ValueError: if the order is not either descend or ascend
  """
  with tf.name_scope(scope, 'SortByField'):
    if order != SortOrder.descend and order != SortOrder.ascend:
      raise ValueError('Invalid sort order')

    field_to_sort = boxlist.get_field(field)
    if len(field_to_sort.shape.as_list()) != 1:
      raise ValueError('Field should have rank 1')

    num_boxes = boxlist.num_boxes()
    num_entries = tf.size(field_to_sort)
    length_assert = tf.Assert(
        tf.equal(num_boxes, num_entries),
        ['Incorrect field size: actual vs expected.', num_entries, num_boxes])

    with tf.control_dependencies([length_assert]):
      # TODO: Remove with tf.device when top_k operation runs correctly on GPU.
      with tf.device('/cpu:0'):
        _, sorted_indices = tf.nn.top_k(field_to_sort, num_boxes, sorted=True)

    if order == SortOrder.ascend:
      sorted_indices = tf.reverse_v2(sorted_indices, [0])

    return gather(boxlist, sorted_indices)