Python theano 模块,__version__() 实例源码

我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用theano.__version__()

项目:benchmarks    作者:tensorflow    | 项目源码 | 文件源码
def _upload_metrics(current_model):
    bq.upload_metrics_to_bq(test_name=current_model.test_name,
                            total_time=current_model.total_time,
                            epochs=current_model.epochs,
                            batch_size=current_model.batch_size,
                            backend_type=keras.backend.backend(),
                            backend_version=get_backend_version(),
                            cpu_num_cores=config['cpu_num_cores'],
                            cpu_memory=config['cpu_memory'],
                            cpu_memory_info=config['cpu_memory_info'],
                            gpu_count=config['gpus'],
                            gpu_platform=config['gpu_platform'],
                            platform_type=config['platform_type'],
                            platform_machine_type=config['platform_machine_type'],
                            keras_version=keras.__version__,
                            sample_type=current_model.sample_type)


# MNIST MLP
项目:benchmarks    作者:tensorflow    | 项目源码 | 文件源码
def get_backend_version():
    if keras.backend.backend() == "tensorflow":
        return tf.__version__
    if keras.backend.backend() == "theano":
        return theano.__version__
    if keras.backend.backend() == "cntk":
        return cntk.__version__
    return "undefined"
项目:FLASH    作者:yuyuz    | 项目源码 | 文件源码
def _check_modules():
    """Checks whether all dependencies are installed"""

    try:
        import numpy
        if numpy.__version__ < "1.6.0":
            logger.warning("WARNING: You are using a numpy %s < 1.6.0. This "
                           "might not work", numpy.__version__)
    except:
        raise ImportError("Numpy cannot be imported. Are you sure that it's installed?")

    try:
        import scipy
        if scipy.__version__ < "0.12.0":
            logger.warning("WARNING: You are using a scipy %s < 0.12.0. "
                           "This might not work", scipy.__version__)
    except:
        raise ImportError("Scipy cannot be imported. Are you sure that it's installed?")

    try:
        import theano
        logger.debug("\tTheano: %s" % str(theano.__version__))
    except ImportError:
        logger.warning("Theano not found. You might need this to run some "
                       "more complex benchmarks!")

    if 'cuda' not in os.environ['PATH']:
        logger.warning("CUDA not in $PATH")
项目:denet    作者:lachlants    | 项目源码 | 文件源码
def initialize(args, data_shape, class_labels, class_num):

    cudnn_info=(theano.config.dnn.conv.algo_fwd, theano.config.dnn.conv.algo_bwd_data, theano.config.dnn.conv.algo_bwd_filter)
    logging.info("Using theano version:", theano.__version__, "(cudnn fwd=%s,bwd data=%s,bwd filter=%s)"%cudnn_info)
    if args.model is None:

        #construct convolutional model
        logging.info("Building convolutional model (%i classes)..."%class_num)
        model = ModelCNN()
        model.batch_size = args.batch_size
        model.class_labels = class_labels
        model.class_num = class_num

        #allow padding to be specified in border mode
        try:
            n = int(args.border_mode)
            border_mode = (n,n)
        except ValueError:
            border_mode = args.border_mode

        model.build(args.model_desc, data_shape, args.activation, border_mode, list(args.weight_init))
    else:
        model = load_from_file(args.model, args.batch_size)
        model.class_labels = class_labels
        model.class_num = class_num
        assert data_shape == model.data_shape, "Mismatching data shapes in .mdl and data: " + str(data_shape) + "!="  + str(model.data_shape)

    model.skip_layer_updates = args.skip_layer_updates
    if len(model.skip_layer_updates) > 0:
        logging.info("Skipping layer updates:", model.skip_layer_updates)

    return model

#
项目:Theano-Deep-learning    作者:GeekLiB    | 项目源码 | 文件源码
def _show_system_info(self):
        import theano
        print("Theano version %s" % theano.__version__)
        theano_dir = os.path.dirname(theano.__file__)
        print("theano is installed in %s" % theano_dir)

        super(TheanoNoseTester, self)._show_system_info()
项目:Binary-Neural-Networks    作者:akshaychawla    | 项目源码 | 文件源码
def __init__(self, input):
        self.input = input 
        if "0.9.0" in theano.__version__:
            self.output = T.flatten(self.input, outdim=2) # support theano 0.9.0 api
        elif "0.10.0" in theano.__version__:
            self.output = T.flatten(self.input, ndim=2) # support theano 0.10.0 api
        else:
            raise NotImplementedError("this version of theano is not supported") # I can't support all versions; I'm only human.
项目:sampleRNN_ICLR2017    作者:soroushmehr    | 项目源码 | 文件源码
def print_model_settings(locals_var, path=None, sys_arg=False):
    """
    Prints all variables in upper case in locals_var,
    except for T which usually stands for theano.tensor.
    If locals() passed as input to this method, will print
    all the variables in upper case defined so far, that is
    model settings.

    With `path` as an address to a directory it will _append_ it
    as a file named `model_settings.txt` as well.

    With `sys_arg` set to True, log information about Python, Numpy,
    and Theano and passed arguments to the script will be added too.
    args.pkl would be overwritten, specially in case of resuming a job.
    But again that wouldn't be much of a problem as all the passed args
    to the script except for '--resume' should be the same.

    With both `path` and `sys_arg` passed, dumps the theano.config.

    :usage:
        >>> import theano.tensor as T
        >>> import lib
        >>> BATCH_SIZE, DIM = 128, 512
        >>> DATA_PATH = '/Path/to/dataset'
        >>> lib.print_model_settings(locals(), path='./')
    """
    log = ""
    if sys_arg:
        try:
            log += "Python:\n"
            log += "\tsys.version_info\t{}\n".format(str(sys.version_info))
            log += "Numpy:\n"
            log += "\t.__version__\t{}\n".format(numpy.__version__)
            log += "Theano:\n"
            log += "\t.__version__\t{}\n".format(theano.__version__)
            log += "\n\nAll passed args:\n"
            log += str(sys.argv)
            log += "\n"
        except:
            print "Something went wrong during sys_arg logging. Continue anyway!"

    log += "\nModel settings:"
    all_vars = [(k,v) for (k,v) in locals_var.items() if (k.isupper() and k != 'T')]
    all_vars = sorted(all_vars, key=lambda x: x[0])
    for var_name, var_value in all_vars:
        log += ("\n\t%-20s %s" % (var_name, var_value))
    print log
    if path is not None:
        ensure_dir(path)
        # Don't override, just append if by mistake there is something in the file.
        with open(os.path.join(path, __model_setting_file_name), 'a+') as f:
            f.write(log)
        if sys_arg:
            with open(os.path.join(path, 'th_conf.txt'), 'a+') as f:
                f.write(str(theano.config))
            with open(os.path.join(path, 'args.pkl'), 'wb') as f:
                pickle.dump(sys.argv, f)
                # To load:
                # >>> import cPickle as pickle
                # >>> args = pickle.load(open(os.path.join(path, 'args.pkl'), 'rb'))
项目:mimicry.ai    作者:fizerkhan    | 项目源码 | 文件源码
def print_model_settings(locals_var, path=None, sys_arg=False):
    """
    Prints all variables in upper case in locals_var,
    except for T which usually stands for theano.tensor.
    If locals() passed as input to this method, will print
    all the variables in upper case defined so far, that is
    model settings.

    With `path` as an address to a directory it will _append_ it
    as a file named `model_settings.txt` as well.

    With `sys_arg` set to True, log information about Python, Numpy,
    and Theano and passed arguments to the script will be added too.
    args.pkl would be overwritten, specially in case of resuming a job.
    But again that wouldn't be much of a problem as all the passed args
    to the script except for '--resume' should be the same.

    With both `path` and `sys_arg` passed, dumps the theano.config.

    :usage:
        >>> import theano.tensor as T
        >>> import lib
        >>> BATCH_SIZE, DIM = 128, 512
        >>> DATA_PATH = '/Path/to/dataset'
        >>> lib.print_model_settings(locals(), path='./')
    """
    log = ""
    if sys_arg:
        try:
            log += "Python:\n"
            log += "\tsys.version_info\t{}\n".format(str(sys.version_info))
            log += "Numpy:\n"
            log += "\t.__version__\t{}\n".format(numpy.__version__)
            log += "Theano:\n"
            log += "\t.__version__\t{}\n".format(theano.__version__)
            log += "\n\nAll passed args:\n"
            log += str(sys.argv)
            log += "\n"
        except:
            print "Something went wrong during sys_arg logging. Continue anyway!"

    log += "\nModel settings:"
    all_vars = [(k,v) for (k,v) in locals_var.items() if (k.isupper() and k != 'T')]
    all_vars = sorted(all_vars, key=lambda x: x[0])
    for var_name, var_value in all_vars:
        log += ("\n\t%-20s %s" % (var_name, var_value))
    print log
    if path is not None:
        ensure_dir(path)
        # Don't override, just append if by mistake there is something in the file.
        with open(os.path.join(path, __model_setting_file_name), 'a+') as f:
            f.write(log)
        if sys_arg:
            with open(os.path.join(path, 'th_conf.txt'), 'a+') as f:
                f.write(str(theano.config))
            with open(os.path.join(path, 'args.pkl'), 'wb') as f:
                pickle.dump(sys.argv, f)
                # To load:
                # >>> import cPickle as pickle
                # >>> args = pickle.load(open(os.path.join(path, 'args.pkl'), 'rb'))