Python torch.backends.cudnn 模块,lib() 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用torch.backends.cudnn.lib()

项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def init_dropout_descriptor(fn, handle):
    dropout_desc = cudnn.DropoutDescriptor()

    dropout_states_size = ctypes.c_long()
    check_error(cudnn.lib.cudnnDropoutGetStatesSize(
        handle,
        ctypes.byref(dropout_states_size)))

    dropout_states = torch.cuda.ByteTensor(dropout_states_size.value)
    dropout_desc.set(
        handle,
        fn.dropout,
        dropout_states,
        fn.seed
    )
    return dropout_desc
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def get_num_weights(handle, rnn_desc, x_desc, datatype):
    weight_size = ctypes.c_long()
    check_error(cudnn.lib.cudnnGetRNNParamsSize(
        handle,
        rnn_desc,
        x_desc,
        ctypes.byref(weight_size),
        datatype
    ))
    elem_size = cudnn._sizeofmap[datatype]
    assert(weight_size.value % elem_size == 0)
    return weight_size.value // elem_size
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def get_num_weights(handle, rnn_desc, x_desc, datatype):
    weight_size = ctypes.c_long()
    check_error(cudnn.lib.cudnnGetRNNParamsSize(
        handle,
        rnn_desc,
        x_desc,
        ctypes.byref(weight_size),
        datatype
    ))
    elem_size = cudnn._sizeofmap[datatype]
    assert weight_size.value % elem_size == 0
    return weight_size.value // elem_size
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def get_num_weights(handle, rnn_desc, x_desc, datatype):
    weight_size = ctypes.c_long()
    check_error(cudnn.lib.cudnnGetRNNParamsSize(
        handle,
        rnn_desc,
        x_desc,
        ctypes.byref(weight_size),
        datatype
    ))
    elem_size = cudnn._sizeofmap[datatype]
    assert weight_size.value % elem_size == 0
    return weight_size.value // elem_size
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def get_num_weights(handle, rnn_desc, x_desc, datatype):
    weight_size = ctypes.c_long()
    check_error(cudnn.lib.cudnnGetRNNParamsSize(
        handle,
        rnn_desc,
        x_desc,
        ctypes.byref(weight_size),
        datatype
    ))
    elem_size = cudnn._sizeofmap[datatype]
    assert weight_size.value % elem_size == 0
    return weight_size.value // elem_size
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def get_num_weights(handle, rnn_desc, x_desc, datatype):
    weight_size = ctypes.c_long()
    check_error(cudnn.lib.cudnnGetRNNParamsSize(
        handle,
        rnn_desc,
        x_desc,
        ctypes.byref(weight_size),
        datatype
    ))
    elem_size = cudnn._sizeofmap[datatype]
    assert weight_size.value % elem_size == 0
    return weight_size.value // elem_size
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def backward_weight(fn, input, hx, output, weight, grad_weight):
    with torch.cuda.device_of(input):
        handle = cudnn.get_handle()

        if fn.mode == cudnn.CUDNN_LSTM:
            hx, cx = hx
        else:
            cx = None

        if fn.batch_first:
            input = input.transpose(1, 2)
            output = output.transpose(1, 2)

        input_size = _input_size(fn)
        hidden_size = _hidden_size(fn)
        if not fn.train:
            raise RuntimeError('backward_weight can only be called when training!')
        if fn.dropout != 0 and lib.version < 5103:
            raise RuntimeError('dropout supported only in cudnn v 5.1 and above')
        if tuple(input.size()) != input_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                input_size, tuple(input.size())))
        if not fn.train:
            raise RuntimeError('backward_weight can only be called when training!')
        if tuple(hx.size()) != hidden_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                hidden_size, hx.size()))

        x = input.contiguous()
        y = output
        dw = fn.weight_buf.new().resize_as_(fn.weight_buf).zero_()

        check_error(cudnn.lib.cudnnRNNBackwardWeights(
            handle,
            fn.rnn_desc,
            fn.seq_length,
            fn.x_descs, ctypes.c_void_p(x.data_ptr()),
            fn.hx_desc, ctypes.c_void_p(hx.data_ptr()),
            fn.y_descs, ctypes.c_void_p(y.data_ptr()),
            ctypes.c_void_p(fn.workspace.data_ptr()), fn.workspace.size(0),
            fn.w_desc, ctypes.c_void_p(dw.data_ptr()),
            ctypes.c_void_p(fn.reserve.data_ptr()), fn.reserve.size(0)
        ))

        # copy the weights from the weight_buf into grad_weight
        grad_params = get_parameters(fn, handle, dw)
        _copyParams(grad_params, grad_weight)
        return grad_weight
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def backward_weight(fn, input, hx, output, weight, grad_weight):
    with torch.cuda.device_of(input):
        is_input_packed = fn.batch_sizes is not None
        handle = cudnn.get_handle()

        if fn.mode == cudnn.CUDNN_LSTM:
            hx, cx = hx
        else:
            cx = None

        if fn.batch_first and not is_input_packed:
            input = input.transpose(0, 1)
            output = output.transpose(0, 1)
        input_size = _input_size(fn, input)
        hidden_size = _hidden_size(fn)
        if not fn.requires_grad:
            raise RuntimeError('backward_weight can only be called when the function requires grad!')
        if fn.dropout != 0 and cudnn.version() < 5103:
            raise RuntimeError('dropout supported only in cudnn v 5.1 and above')
        if tuple(input.size()) != input_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                input_size, tuple(input.size())))
        if tuple(hx.size()) != hidden_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                hidden_size, hx.size()))

        assert hx.is_contiguous()
        assert cx is None or cx.is_contiguous()
        x = input.contiguous()
        y = output
        dw = fn.weight_buf.new().resize_as_(fn.weight_buf).zero_()

        check_error(cudnn.lib.cudnnRNNBackwardWeights(
            handle,
            fn.rnn_desc,
            fn.seq_length,
            fn.x_descs, ctypes.c_void_p(x.data_ptr()),
            fn.hx_desc, ctypes.c_void_p(hx.data_ptr()),
            fn.y_descs, ctypes.c_void_p(y.data_ptr()),
            ctypes.c_void_p(fn.workspace.data_ptr()), fn.workspace.size(0),
            fn.w_desc, ctypes.c_void_p(dw.data_ptr()),
            ctypes.c_void_p(fn.reserve.data_ptr()), fn.reserve.size(0)
        ))

        # copy the weights from the weight_buf into grad_weight
        grad_params = get_parameters(fn, handle, dw)
        _copyParams(grad_params, grad_weight)
        return grad_weight
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def backward_weight(fn, input, hx, output, weight, grad_weight):
    with torch.cuda.device_of(input):
        is_input_packed = fn.batch_sizes is not None
        handle = cudnn.get_handle()

        if fn.mode == cudnn.CUDNN_LSTM:
            hx, cx = hx
        else:
            cx = None

        if fn.batch_first and not is_input_packed:
            input = input.transpose(0, 1)
            output = output.transpose(0, 1)
        input_size = _input_size(fn, input)
        hidden_size = _hidden_size(fn)
        if not fn.requires_grad:
            raise RuntimeError('backward_weight can only be called when the function requires grad!')
        if fn.dropout != 0 and cudnn.version() < 5103:
            raise RuntimeError('dropout supported only in cudnn v 5.1 and above')
        if tuple(input.size()) != input_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                input_size, tuple(input.size())))
        if tuple(hx.size()) != hidden_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                hidden_size, hx.size()))

        assert hx.is_contiguous()
        assert cx is None or cx.is_contiguous()
        x = input.contiguous()
        y = output
        dw = fn.weight_buf.new().resize_as_(fn.weight_buf).zero_()

        check_error(cudnn.lib.cudnnRNNBackwardWeights(
            handle,
            fn.rnn_desc,
            fn.seq_length,
            fn.x_descs, ctypes.c_void_p(x.data_ptr()),
            fn.hx_desc, ctypes.c_void_p(hx.data_ptr()),
            fn.y_descs, ctypes.c_void_p(y.data_ptr()),
            ctypes.c_void_p(fn.workspace.data_ptr()), fn.workspace.size(0),
            fn.w_desc, ctypes.c_void_p(dw.data_ptr()),
            ctypes.c_void_p(fn.reserve.data_ptr()), fn.reserve.size(0)
        ))

        # copy the weights from the weight_buf into grad_weight
        grad_params = get_parameters(fn, handle, dw)
        _copyParams(grad_params, grad_weight)
        return grad_weight
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def backward_weight(fn, input, hx, output, weight, grad_weight):
    with torch.cuda.device_of(input):
        is_input_packed = fn.batch_sizes is not None
        handle = cudnn.get_handle()

        if fn.mode == cudnn.CUDNN_LSTM:
            hx, cx = hx
        else:
            cx = None

        if fn.batch_first and not is_input_packed:
            input = input.transpose(0, 1)
            output = output.transpose(0, 1)
        input_size = _input_size(fn, input)
        hidden_size = _hidden_size(fn)
        if not fn.requires_grad:
            raise RuntimeError('backward_weight can only be called when the function requires grad!')
        if fn.dropout != 0 and cudnn.version() < 5103:
            raise RuntimeError('dropout supported only in cudnn v 5.1 and above')
        if tuple(input.size()) != input_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                input_size, tuple(input.size())))
        if tuple(hx.size()) != hidden_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                hidden_size, hx.size()))

        assert hx.is_contiguous()
        assert cx is None or cx.is_contiguous()
        x = input.contiguous()
        y = output
        dw = fn.weight_buf.new().resize_as_(fn.weight_buf).zero_()

        with torch.cuda.device_of(input):
            workspace = torch.cuda.ByteTensor(fn.workspace_size)
        check_error(cudnn.lib.cudnnRNNBackwardWeights(
            handle,
            fn.rnn_desc,
            fn.seq_length,
            fn.x_descs, ctypes.c_void_p(x.data_ptr()),
            fn.hx_desc, ctypes.c_void_p(hx.data_ptr()),
            fn.y_descs, ctypes.c_void_p(y.data_ptr()),
            ctypes.c_void_p(workspace.data_ptr()), workspace.size(0),
            fn.w_desc, ctypes.c_void_p(dw.data_ptr()),
            ctypes.c_void_p(fn.reserve.data_ptr()), fn.reserve.size(0)
        ))

        # copy the weights from the weight_buf into grad_weight
        grad_params = get_parameters(fn, handle, dw)
        _copyParams(grad_params, grad_weight)
        return grad_weight
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def backward_weight(fn, input, hx, output, weight, grad_weight):
    with torch.cuda.device_of(input):
        is_input_packed = fn.batch_sizes is not None
        handle = cudnn.get_handle()

        if fn.mode == cudnn.CUDNN_LSTM:
            hx, cx = hx
        else:
            cx = None

        if fn.batch_first and not is_input_packed:
            input = input.transpose(0, 1)
            output = output.transpose(0, 1)
        input_size = _input_size(fn, input)
        hidden_size = _hidden_size(fn)
        if not fn.requires_grad:
            raise RuntimeError('backward_weight can only be called when the function requires grad!')
        if fn.dropout != 0 and cudnn.version() < 5103:
            raise RuntimeError('dropout supported only in cudnn v 5.1 and above')
        if tuple(input.size()) != input_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                input_size, tuple(input.size())))
        if tuple(hx.size()) != hidden_size:
            raise RuntimeError('Expected input size {}, got {}'.format(
                hidden_size, hx.size()))

        assert hx.is_contiguous()
        assert cx is None or cx.is_contiguous()
        x = input.contiguous()
        y = output
        dw = fn.weight_buf.new().resize_as_(fn.weight_buf).zero_()

        with torch.cuda.device_of(input):
            workspace = torch.cuda.ByteTensor(fn.workspace_size)
        check_error(cudnn.lib.cudnnRNNBackwardWeights(
            handle,
            fn.rnn_desc,
            fn.seq_length,
            fn.x_descs, ctypes.c_void_p(x.data_ptr()),
            fn.hx_desc, ctypes.c_void_p(hx.data_ptr()),
            fn.y_descs, ctypes.c_void_p(y.data_ptr()),
            ctypes.c_void_p(workspace.data_ptr()), workspace.size(0),
            fn.w_desc, ctypes.c_void_p(dw.data_ptr()),
            ctypes.c_void_p(fn.reserve.data_ptr()), fn.reserve.size(0)
        ))

        # copy the weights from the weight_buf into grad_weight
        grad_params = get_parameters(fn, handle, dw)
        _copyParams(grad_params, grad_weight)
        return grad_weight