我们从Python开源项目中,提取了以下12个代码示例,用于说明如何使用torch.nn.functional.conv1d()。
def forward(self, input): return F.conv1d(input, self.alpha * Variable(self.delta) + self.beta * normalize(self.weight), self.bias, self.stride, self.padding, self.dilation)
def test_dirac_identity(self): batch, in_c, out_c, size, kernel_size = 8, 3, 4, 5, 3 # Test 1D input_var = Variable(torch.randn(batch, in_c, size)) filter_var = Variable(torch.zeros(out_c, in_c, kernel_size)) init.dirac(filter_var) output_var = F.conv1d(input_var, filter_var) input_tensor, output_tensor = input_var.data, output_var.data # Variables do not support nonzero self.assertEqual(input_tensor[:, :, 1:-1], output_tensor[:, :in_c, :]) # Assert in_c outputs are preserved assert torch.nonzero(output_tensor[:, in_c:, :]).numel() == 0 # Assert extra outputs are 0 # Test 2D input_var = Variable(torch.randn(batch, in_c, size, size)) filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size)) init.dirac(filter_var) output_var = F.conv2d(input_var, filter_var) input_tensor, output_tensor = input_var.data, output_var.data self.assertEqual(input_tensor[:, :, 1:-1, 1:-1], output_tensor[:, :in_c, :, :]) assert torch.nonzero(output_tensor[:, in_c:, :, :]).numel() == 0 # Test 3D input_var = Variable(torch.randn(batch, in_c, size, size, size)) filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size, kernel_size)) init.dirac(filter_var) output_var = F.conv3d(input_var, filter_var) input_tensor, output_tensor = input_var.data, output_var.data self.assertEqual(input_tensor[:, :, 1:-1, 1:-1, 1:-1], output_tensor[:, :in_c, :, :]) assert torch.nonzero(output_tensor[:, in_c:, :, :, :]).numel() == 0
def test_calculate_gain_linear(self): for fn in ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose2d', 'conv_transpose2d', 'conv_transpose3d']: gain = init.calculate_gain(fn) self.assertEqual(gain, 1)
def forward(self, input): return F.conv1d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
def _shift(self, wg_vb, shift_vb): """ variables needed: wg_vb: [batch_size x num_heads x mem_hei] shift_vb: [batch_size x num_heads x num_allowed_shifts] -> sum=1; the shift weight vector returns: ws_vb: [batch_size x num_heads x mem_hei] -> the attention weight by location focus """ batch_size = wg_vb.size(0) input_dim = wg_vb.size(2); assert input_dim == self.mem_hei filter_dim = shift_vb.size(2); assert filter_dim == self.num_allowed_shifts ws_vb = None for i in range(batch_size): # for each head in each batch, the kernel is different ... seems there's no other way by doing the loop here for j in range(self.num_heads): ws_tmp_vb = F.conv1d(wg_vb[i][j].unsqueeze(0).unsqueeze(0).repeat(1, 1, 3), shift_vb[i][j].unsqueeze(0).unsqueeze(0).contiguous(), padding=filter_dim//2)[:, :, input_dim:(2*input_dim)] if ws_vb is None: ws_vb = ws_tmp_vb else: ws_vb = torch.cat((ws_vb, ws_tmp_vb), 0) ws_vb = ws_vb.view(-1, self.num_heads, self.mem_hei) return ws_vb
def forward(self, decoder_input, z, drop_prob): """ :param decoder_input: tensor with shape of [batch_size, seq_len, embed_size] :param z: sequence latent variable with shape of [batch_size, latent_variable_size] :param drop_prob: probability of an element of decoder input to be zeroed in sense of dropout :return: unnormalized logits of sentense words distribution probabilities with shape of [batch_size, seq_len, word_vocab_size] """ assert parameters_allocation_check(self), \ 'Invalid CUDA options. Parameters should be allocated in the same memory' [batch_size, seq_len, _] = decoder_input.size() ''' decoder is conditioned on context via additional bias = W_cond * z to every input token ''' z = t.cat([z] * seq_len, 1).view(batch_size, seq_len, self.params.latent_variable_size) decoder_input = t.cat([decoder_input, z], 2) decoder_input = F.dropout(decoder_input, drop_prob) # x is tensor with shape [batch_size, input_size=in_channels, seq_len=input_width] x = decoder_input.transpose(1, 2).contiguous() for layer, kernel in enumerate(self.kernels): # apply conv layer with non-linearity and drop last elements of sequence to perfrom input shifting x = F.conv1d(x, kernel, bias=self.biases[layer], dilation=self.params.decoder_dilations[layer], padding=self.params.decoder_paddings[layer]) x_width = x.size()[2] x = x[:, :, :(x_width - self.params.decoder_paddings[layer])].contiguous() x = F.relu(x) x = x.transpose(1, 2).contiguous() x = x.view(-1, self.out_size) x = self.fc(x) result = x.view(-1, seq_len, self.params.word_vocab_size) return result