Python torch.nn.functional 模块,bilinear() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用torch.nn.functional.bilinear()

项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def test_bilinear(self):
        module = nn.Bilinear(10, 10, 8)
        module2 = legacy.Bilinear(10, 10, 8)

        module2.weight.copy_(module.weight.data)
        module2.bias.copy_(module.bias.data)

        input1 = torch.randn(4, 10)
        input2 = torch.randn(4, 10)

        output = module(Variable(input1), Variable(input2))
        output2 = module2.forward([input1, input2])

        input1_1 = Variable(input1, requires_grad=True)
        input2_1 = Variable(input2, requires_grad=True)

        output3 = module(input1_1, input2_1)
        grad = torch.randn(*output3.size())
        output3.backward(grad)
        gi1 = input1_1.grad.data.clone()
        gi2 = input2_1.grad.data.clone()

        self.assertEqual(output.data, output2)
        self.assertEqual([gi1, gi2], output3)

        self.assertTrue(gradcheck(lambda x1, x2: F.bilinear(x1, x2, module.weight, module.bias), (input1_1, input2_1)))
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_bilinear(self):
        module = nn.Bilinear(10, 10, 8)
        module2 = legacy.Bilinear(10, 10, 8)

        module2.weight.copy_(module.weight.data)
        module2.bias.copy_(module.bias.data)

        input1 = torch.randn(4, 10)
        input2 = torch.randn(4, 10)

        output = module(Variable(input1), Variable(input2))
        output2 = module2.forward([input1, input2])

        input1_1 = Variable(input1, requires_grad=True)
        input2_1 = Variable(input2, requires_grad=True)

        output3 = module(input1_1, input2_1)
        grad = torch.randn(*output3.size())
        output3.backward(grad)
        gi1 = input1_1.grad.data.clone()
        gi2 = input2_1.grad.data.clone()

        self.assertEqual(output.data, output2)
        # TODO: this assertion is incorrect, fix needed
        # self.assertEqual([gi1, gi2], output3)

        self.assertTrue(gradcheck(lambda x1, x2: F.bilinear(x1, x2, module.weight, module.bias), (input1_1, input2_1)))
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_upsamplingBilinear2d(self):
        m = nn.Upsample(size=4, mode='bilinear')
        in_t = torch.ones(1, 1, 2, 2)
        out_t = m(Variable(in_t))
        self.assertEqual(torch.ones(1, 1, 4, 4), out_t.data)

        input = Variable(torch.randn(1, 1, 2, 2), requires_grad=True)
        self.assertTrue(gradcheck(lambda x: F.upsample(x, 4, mode='bilinear'), (input,)))
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_bilinear(self):
        module = nn.Bilinear(10, 10, 8)
        module_legacy = legacy.Bilinear(10, 10, 8)

        module_legacy.weight.copy_(module.weight.data)
        module_legacy.bias.copy_(module.bias.data)

        input1 = torch.randn(4, 10)
        input2 = torch.randn(4, 10)

        output = module(Variable(input1), Variable(input2))
        output_legacy = module_legacy.forward([input1, input2])

        self.assertEqual(output.data, output_legacy)

        input1_1 = Variable(input1, requires_grad=True)
        input2_1 = Variable(input2, requires_grad=True)

        module.zero_grad()
        module_legacy.zeroGradParameters()

        output = module(input1_1, input2_1)
        grad_output = torch.randn(*output.size())
        gi1_legacy, gi2_legacy = module_legacy.backward([input1, input2], grad_output)
        output.backward(grad_output)
        gi1 = input1_1.grad.data.clone()
        gi2 = input2_1.grad.data.clone()

        self.assertEqual(gi1, gi1_legacy)
        self.assertEqual(gi2, gi2_legacy)
        self.assertEqual(module.weight.grad.data, module_legacy.gradWeight)
        self.assertEqual(module.bias.grad.data, module_legacy.gradBias)

        _assertGradAndGradgradChecks(self, lambda x1, x2: F.bilinear(x1, x2, module.weight, module.bias),
                                     (input1_1, input2_1))
项目:NeuroNLP2    作者:XuezheMax    | 项目源码 | 文件源码
def forward(self, input_left, input_right):
        '''

        Args:
            input_left: Tensor
                the left input tensor with shape = [batch1, batch2, ..., left_features]
            input_right: Tensor
                the right input tensor with shape = [batch1, batch2, ..., right_features]

        Returns:

        '''

        left_size = input_left.size()
        right_size = input_right.size()
        assert left_size[:-1] == right_size[:-1], \
            "batch size of left and right inputs mis-match: (%s, %s)" % (left_size[:-1], right_size[:-1])
        batch = int(np.prod(left_size[:-1]))

        # convert left and right input to matrices [batch, left_features], [batch, right_features]
        input_left = input_left.view(batch, self.left_features)
        input_right = input_right.view(batch, self.right_features)

        # output [batch, out_features]
        output = F.bilinear(input_left, input_right, self.U, self.bias)
        output = output + F.linear(input_left, self.W_l, None) + F.linear(input_right, self.W_r, None)
        # convert back to [batch1, batch2, ..., out_features]
        return output.view(left_size[:-1] + (self.out_features, ))
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_upsamplingBilinear2d(self):
        m = nn.Upsample(size=4, mode='bilinear')
        in_t = torch.ones(1, 1, 2, 2)
        out_t = m(Variable(in_t))
        self.assertEqual(torch.ones(1, 1, 4, 4), out_t.data)

        input = Variable(torch.randn(1, 1, 2, 2), requires_grad=True)
        gradcheck(lambda x: F.upsample(x, 4, mode='bilinear'), [input])
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_bilinear(self):
        module = nn.Bilinear(10, 10, 8)
        module_legacy = legacy.Bilinear(10, 10, 8)

        module_legacy.weight.copy_(module.weight.data)
        module_legacy.bias.copy_(module.bias.data)

        input1 = torch.randn(4, 10)
        input2 = torch.randn(4, 10)

        output = module(Variable(input1), Variable(input2))
        output_legacy = module_legacy.forward([input1, input2])

        self.assertEqual(output.data, output_legacy)

        input1_1 = Variable(input1, requires_grad=True)
        input2_1 = Variable(input2, requires_grad=True)

        module.zero_grad()
        module_legacy.zeroGradParameters()

        output = module(input1_1, input2_1)
        grad_output = torch.randn(*output.size())
        gi1_legacy, gi2_legacy = module_legacy.backward([input1, input2], grad_output)
        output.backward(grad_output)
        gi1 = input1_1.grad.data.clone()
        gi2 = input2_1.grad.data.clone()

        self.assertEqual(gi1, gi1_legacy)
        self.assertEqual(gi2, gi2_legacy)
        self.assertEqual(module.weight.grad.data, module_legacy.gradWeight)
        self.assertEqual(module.bias.grad.data, module_legacy.gradBias)

        _assertGradAndGradgradChecks(self, lambda x1, x2: F.bilinear(x1, x2, module.weight, module.bias),
                                     (input1_1, input2_1))