Python torch 模块,mv() 实例源码

我们从Python开源项目中,提取了以下38个代码示例,用于说明如何使用torch.mv()

项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def backward(self, grad_output):
        tensors = self.saved_tensors
        if len(tensors) == 2:
            input, weight = tensors
            bias = None
        else:
            input, weight, bias = tensors

        grad_input = grad_weight = grad_bias = None
        if self.needs_input_grad[0]:
            grad_input = torch.mm(grad_output, weight)
        if self.needs_input_grad[1]:
            grad_weight = torch.mm(grad_output.t(), input)
        if bias is not None and self.needs_input_grad[2]:
            grad_bias = torch.mv(grad_output.t(), self.add_buffer)

        if bias is not None:
            return grad_input, grad_weight, grad_bias
        else:
            return grad_input, grad_weight
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def backward(self, grad_output):
        matrix, vector = self.saved_tensors
        grad_add_vector = grad_matrix = grad_vector = None

        if self.needs_input_grad[0]:
            grad_add_vector = grad_output
            if self.alpha != 1:
                grad_add_vector = grad_add_vector.mul(self.alpha)

        if self.needs_input_grad[1]:
            grad_matrix = torch.ger(grad_output, vector)
            if self.beta != 1:
                grad_matrix *= self.beta

        if self.needs_input_grad[2]:
            grad_vector = torch.mv(matrix.t(), grad_output)
            if self.beta != 1:
                grad_vector *= self.beta

        return grad_add_vector, grad_matrix, grad_vector
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def backward(self, grad_output):
        vector1, vector2 = self.saved_tensors
        grad_add_matrix = grad_vector1 = grad_vector2 = None

        if self.needs_input_grad[0]:
            grad_add_matrix = grad_output
            if self.alpha != 1:
                grad_add_matrix = grad_add_matrix.mul(self.alpha)

        if self.needs_input_grad[1]:
            grad_vector1 = torch.mv(grad_output, vector2)
            if self.beta != 1:
                grad_vector1 *= self.beta

        if self.needs_input_grad[2]:
            # TODO: maybe it's better to do transpose + mv + transpose
            grad_vector2 = torch.mm(vector1.unsqueeze(0), grad_output)
            if self.beta != 1:
                grad_vector2 *= self.beta

        return grad_add_matrix, grad_vector1, grad_vector2
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def backward(ctx, grad_output):
        matrix, vector = ctx.saved_variables
        grad_add_vector = grad_matrix = grad_vector = None

        if ctx.needs_input_grad[0]:
            grad_add_vector = grad_output
            if ctx.alpha != 1:
                grad_add_vector = grad_add_vector.mul(ctx.alpha)

        if ctx.needs_input_grad[1]:
            grad_matrix = torch.ger(grad_output, vector)
            if ctx.beta != 1:
                grad_matrix *= ctx.beta

        if ctx.needs_input_grad[2]:
            grad_vector = torch.mv(matrix.t(), grad_output)
            if ctx.beta != 1:
                grad_vector *= ctx.beta

        return grad_add_vector, grad_matrix, grad_vector, None, None, None
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def backward(ctx, grad_output):
        vector1, vector2 = ctx.saved_variables
        grad_add_matrix = grad_vector1 = grad_vector2 = None

        if ctx.needs_input_grad[0]:
            grad_add_matrix = grad_output
            if ctx.alpha != 1:
                grad_add_matrix = grad_add_matrix.mul(ctx.alpha)

        if ctx.needs_input_grad[1]:
            grad_vector1 = torch.mv(grad_output, vector2)
            if ctx.beta != 1:
                grad_vector1 *= ctx.beta

        if ctx.needs_input_grad[2]:
            # TODO: maybe it's better to do transpose + mv + transpose
            grad_vector2 = torch.mm(vector1.unsqueeze(0), grad_output).squeeze(0)
            if ctx.beta != 1:
                grad_vector2 *= ctx.beta

        return grad_add_matrix, grad_vector1, grad_vector2, None, None, None
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def updateOutput(self, input):
        M, v = input
        assert M.ndimension() == 2 or M.ndimension() == 3

        if M.ndimension() == 2:
            assert v.ndimension() == 1
            if self.trans:
                M = M.transpose(0, 1)
            self.output.resize_(M.size(0))
            torch.mv(M, v, out=self.output)
        else:
            assert v.ndimension() == 2
            if self.trans:
                M = M.transpose(1, 2)
            self.output.resize_(M.size(0), M.size(1), 1)
            torch.bmm(M, v.view(v.size(0), v.size(1), 1), out=self.output).resize_(M.size(0), M.size(1))

        return self.output
项目:unsupervised-treelstm    作者:jihunchoi    | 项目源码 | 文件源码
def dot_nd(query, candidates):
    """
    Perform a dot product between a query and n-dimensional candidates.

    Args:
        query (Variable): A vector to query, whose size is
            (query_dim,)
        candidates (Variable): A n-dimensional tensor to be multiplied
            by query, whose size is (d0, d1, ..., dn, query_dim)

    Returns:
        output: The result of the dot product, whose size is
            (d0, d1, ..., dn)
    """

    cands_size = candidates.size()
    cands_flat = candidates.view(-1, cands_size[-1])
    output_flat = torch.mv(cands_flat, query)
    output = output_flat.view(*cands_size[:-1])
    return output
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def backward(ctx, grad_output):
        matrix, vector = ctx.saved_variables
        grad_add_vector = grad_matrix = grad_vector = None

        if ctx.needs_input_grad[0]:
            grad_add_vector = grad_output
            if ctx.alpha != 1:
                grad_add_vector = grad_add_vector.mul(ctx.alpha)

        if ctx.needs_input_grad[1]:
            grad_matrix = torch.ger(grad_output, vector)
            if ctx.beta != 1:
                grad_matrix *= ctx.beta

        if ctx.needs_input_grad[2]:
            grad_vector = torch.mv(matrix.t(), grad_output)
            if ctx.beta != 1:
                grad_vector *= ctx.beta

        return grad_add_vector, grad_matrix, grad_vector, None, None, None
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def backward(ctx, grad_output):
        vector1, vector2 = ctx.saved_variables
        grad_add_matrix = grad_vector1 = grad_vector2 = None

        if ctx.needs_input_grad[0]:
            grad_add_matrix = grad_output
            if ctx.alpha != 1:
                grad_add_matrix = grad_add_matrix.mul(ctx.alpha)

        if ctx.needs_input_grad[1]:
            grad_vector1 = torch.mv(grad_output, vector2)
            if ctx.beta != 1:
                grad_vector1 *= ctx.beta

        if ctx.needs_input_grad[2]:
            # TODO: maybe it's better to do transpose + mv + transpose
            grad_vector2 = torch.mm(vector1.unsqueeze(0), grad_output).squeeze(0)
            if ctx.beta != 1:
                grad_vector2 *= ctx.beta

        return grad_add_matrix, grad_vector1, grad_vector2, None, None, None
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def updateOutput(self, input):
        M, v = input
        assert M.ndimension() == 2 or M.ndimension() == 3

        if M.ndimension() == 2:
            assert v.ndimension() == 1
            if self.trans:
                M = M.transpose(0, 1)
            self.output.resize_(M.size(0))
            torch.mv(M, v, out=self.output)
        else:
            assert v.ndimension() == 2
            if self.trans:
                M = M.transpose(1, 2)
            self.output.resize_(M.size(0), M.size(1), 1)
            torch.bmm(M, v.view(v.size(0), v.size(1), 1), out=self.output).resize_(M.size(0), M.size(1))

        return self.output
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def backward(ctx, grad_output):
        matrix, vector = ctx.saved_variables
        grad_add_vector = grad_matrix = grad_vector = None

        if ctx.needs_input_grad[0]:
            grad_add_vector = maybe_unexpand(grad_output, ctx.add_vector_size)
            if ctx.alpha != 1:
                grad_add_vector = grad_add_vector.mul(ctx.alpha)

        if ctx.needs_input_grad[1]:
            grad_matrix = torch.ger(grad_output, vector)
            if ctx.beta != 1:
                grad_matrix *= ctx.beta

        if ctx.needs_input_grad[2]:
            grad_vector = torch.mv(matrix.t(), grad_output)
            if ctx.beta != 1:
                grad_vector *= ctx.beta

        return grad_add_vector, grad_matrix, grad_vector, None, None, None
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def backward(ctx, grad_output):
        vector1, vector2 = ctx.saved_variables
        grad_add_matrix = grad_vector1 = grad_vector2 = None

        if ctx.needs_input_grad[0]:
            grad_add_matrix = maybe_unexpand(grad_output, ctx.add_matrix_size)
            if ctx.alpha != 1:
                grad_add_matrix = grad_add_matrix.mul(ctx.alpha)

        if ctx.needs_input_grad[1]:
            grad_vector1 = torch.mv(grad_output, vector2)
            if ctx.beta != 1:
                grad_vector1 *= ctx.beta

        if ctx.needs_input_grad[2]:
            # TODO: maybe it's better to do transpose + mv + transpose
            grad_vector2 = torch.mm(vector1.unsqueeze(0), grad_output).squeeze(0)
            if ctx.beta != 1:
                grad_vector2 *= ctx.beta

        return grad_add_matrix, grad_vector1, grad_vector2, None, None, None
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def updateOutput(self, input):
        M, v = input
        assert M.ndimension() == 2 or M.ndimension() == 3

        if M.ndimension() == 2:
            assert v.ndimension() == 1
            if self.trans:
                M = M.transpose(0, 1)
            self.output.resize_(M.size(0))
            torch.mv(M, v, out=self.output)
        else:
            assert v.ndimension() == 2
            if self.trans:
                M = M.transpose(1, 2)
            self.output.resize_(M.size(0), M.size(1), 1)
            torch.bmm(M, v.view(v.size(0), v.size(1), 1), out=self.output).resize_(M.size(0), M.size(1))

        return self.output
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def updateOutput(self, input):
        M, v = input
        assert M.ndimension() == 2 or M.ndimension() == 3

        if M.ndimension() == 2:
            assert v.ndimension() == 1
            if self.trans:
                M = M.transpose(0, 1)
            self.output.resize_(M.size(0))
            torch.mv(M, v, out=self.output)
        else:
            assert v.ndimension() == 2
            if self.trans:
                M = M.transpose(1, 2)
            self.output.resize_(M.size(0), M.size(1), 1)
            torch.bmm(M, v.view(v.size(0), v.size(1), 1), out=self.output).resize_(M.size(0), M.size(1))

        return self.output
项目:spatial-reasoning    作者:JannerM    | 项目源码 | 文件源码
def backward(self, grad_output):
        input, weight, bias = self.saved_tensors

        grad_input = grad_weight = grad_bias = None
        if self.needs_input_grad[0]:
            grad_output = grad_output.squeeze()
            grad_input = torch.mm(grad_output, weight)
        if self.needs_input_grad[1]:
            grad_weight = torch.mm(grad_output.t(), input)
        if bias is not None and self.needs_input_grad[2]:
            grad_bias = torch.mv(grad_output.t(), self.add_buffer)

        if bias is not None:
            return grad_input, grad_weight, grad_bias
        else:
            return grad_input, grad_weight
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def __matmul__(self, other):
        dim_self = self.dim()
        dim_other = other.dim()
        # TODO: should this really be dot product?
        # if dim_self == 1 and dim_other == 1:
            # return self.dot(other)
        if dim_self == 2 and dim_other == 1:
            return torch.mv(self, other)
        elif dim_self == 2 and dim_other == 2:
            return torch.mm(self, other)
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def accGradParameters(self, input, gradOutput, scale=1):
        self.network.accGradParameters([input, self.partition], gradOutput, scale)
        if self.bias:
            self.buffer = self.buffer or input.new()
            self.buffer.resize_(gradOutput.size(1))
            torch.mv(self.buffer, gradOutput.t(), self.addBuffer).mul_(scale)
            self.gradBias.index_add_(
                1, self.partition, self.buffer.view(1, self.buffer.nelement())
            )
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def test_mv(self):
        m1 = torch.randn(100,100)
        v1 = torch.randn(100)

        res1 = torch.mv(m1,v1)
        res2 = res1.clone().zero_()
        for i, j in iter_indices(m1):
            res2[i] += m1[i][j] * v1[j]

        self.assertEqual(res1, res2)
项目:pyro    作者:uber    | 项目源码 | 文件源码
def gmm_batch_model(data):
    p = pyro.param("p", Variable(torch.Tensor([0.3]), requires_grad=True))
    p = torch.cat([p, 1 - p])
    sigma = pyro.param("sigma", Variable(torch.Tensor([1.0]), requires_grad=True))
    mus = Variable(torch.Tensor([-1, 1]))
    with pyro.iarange("data", len(data)) as batch:
        n = len(batch)
        z = pyro.sample("z", dist.Categorical(p.unsqueeze(0).expand(n, 2)))
        assert z.size() == (n, 2)
        mu = torch.mv(z, mus)
        pyro.observe("x", dist.Normal(mu, sigma.expand(n)), data[batch])
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def test_ip_forward():
    p_t, Q_t, G_t, A_t, z0_t, s0_t = [torch.Tensor(x) for x in [p, Q, G, A, z0, s0]]
    b = torch.mv(A_t, z0_t) if neq > 0 else None
    h = torch.mv(G_t,z0_t)+s0_t
    L_Q, L_S, R = aip.pre_factor_kkt(Q_t, G_t, A_t)

    zhat_ip, nu_ip, lam_ip = aip.forward_single(p_t, Q_t, G_t, A_t, b, h, L_Q, L_S, R)
    # Unnecessary clones here because of a pytorch bug when calling numpy
    # on a tensor with a non-zero offset.
    npt.assert_allclose(zhat, zhat_ip.clone().numpy(), rtol=RTOL, atol=ATOL)
    if neq > 0:
        npt.assert_allclose(nu, nu_ip.clone().numpy(), rtol=RTOL, atol=ATOL)
    npt.assert_allclose(lam, lam_ip.clone().numpy(), rtol=RTOL, atol=ATOL)
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def prof_instance(nz, neq, nineq, nIter, cuda):
    L = np.tril(npr.uniform(0,1, (nz,nz))) + np.eye(nz,nz)
    G = npr.randn(nineq,nz)
    A = npr.randn(neq,nz)
    z0 = npr.randn(nz)
    s0 = np.ones(nineq)
    p = npr.randn(nz)

    p, L, G, A, z0, s0 = [torch.Tensor(x) for x in [p, L, G, A, z0, s0]]
    Q = torch.mm(L, L.t())+0.001*torch.eye(nz).type_as(L)
    if cuda:
        p, L, Q, G, A, z0, s0 = [x.cuda() for x in [p, L, Q, G, A, z0, s0]]

    af = adact.AdactFunction()

    start = time.time()
    # One-time cost for numpy conversion.
    p_np, L_np, G_np, A_np, z0_np, s0_np = [adact.toNp(v) for v in [p, L, G, A, z0, s0]]
    cp = time.time()-start
    for i in range(nIter):
        start = time.time()
        zhat, nu, lam = af.forward_single_np(p_np, L_np, G_np, A_np, z0_np, s0_np)
        cp += time.time()-start

    b = torch.mv(A, z0) if neq > 0 else None
    h = torch.mv(G, z0)+s0
    L_Q, L_S, R = aip.pre_factor_kkt(Q, G, A, nineq, neq)
    pdipm = []
    for i in range(nIter):
        start = time.time()
        zhat_ip, nu_ip, lam_ip = aip.forward_single(p, Q, G, A, b, h, L_Q, L_S, R)
        pdipm.append(time.time()-start)
    return cp, np.sum(pdipm)
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def backward(ctx, grad_output):
        input, weight, bias = ctx.saved_variables

        grad_input = grad_weight = grad_bias = None
        if ctx.needs_input_grad[0]:
            grad_input = torch.mm(grad_output, weight)
        if ctx.needs_input_grad[1]:
            grad_weight = torch.mm(grad_output.t(), input)
        if bias is not None and ctx.needs_input_grad[2]:
            grad_bias = torch.mv(grad_output.t(), Variable(ctx.add_buffer))

        if bias is not None:
            return grad_input, grad_weight, grad_bias
        else:
            return grad_input, grad_weight
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def accGradParameters(self, input, gradOutput, scale=1):
        self.network.accGradParameters([input, self.partition], gradOutput, scale)
        if self.bias is not None:
            if self.buffer is None:
                self.buffer = input.new()
            self.buffer.resize_(gradOutput.size(1))
            torch.mv(gradOutput.t(), self.addBuffer, out=self.buffer).mul_(scale)
            self.gradBias.index_add_(
                1, self.partition, self.buffer.view(1, self.buffer.nelement())
            )
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def test_mv(self):
        m1 = torch.randn(100, 100)
        v1 = torch.randn(100)

        res1 = torch.mv(m1, v1)
        res2 = res1.clone().zero_()
        for i, j in iter_indices(m1):
            res2[i] += m1[i][j] * v1[j]

        self.assertEqual(res1, res2)
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def accGradParameters(self, input, gradOutput, scale=1):
        self.network.accGradParameters([input, self.partition], gradOutput, scale)
        if self.bias is not None:
            if self.buffer is None:
                self.buffer = input.new()
            self.buffer.resize_(gradOutput.size(1))
            torch.mv(gradOutput.t(), self.addBuffer, out=self.buffer).mul_(scale)
            self.gradBias.index_add_(
                1, self.partition, self.buffer.view(1, self.buffer.nelement())
            )
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_functional_blas(self):
        def compare(fn, *args):
            unpacked_args = tuple(arg.data if isinstance(arg, Variable) else arg
                                  for arg in args)
            self.assertEqual(fn(*args).data, fn(*unpacked_args))

        def test_blas_add(fn, x, y, z):
            # Checks all signatures
            compare(fn, x, y, z)
            compare(fn, 0.5, x, y, z)
            compare(fn, 0.5, x, 0.25, y, z)

        def test_blas(fn, x, y):
            compare(fn, x, y)

        test_blas(torch.mm, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10, 4)))
        test_blas_add(torch.addmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10, 4)))
        test_blas(torch.bmm, Variable(torch.randn(4, 2, 10)),
                  Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.addbmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.baddbmm, Variable(torch.randn(4, 2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas(torch.mv, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10)))
        test_blas_add(torch.addmv, Variable(torch.randn(2)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10)))
        test_blas(torch.ger, Variable(torch.randn(5)),
                  Variable(torch.randn(6)))
        test_blas_add(torch.addr, Variable(torch.randn(5, 6)),
                      Variable(torch.randn(5)), Variable(torch.randn(6)))
项目:srnn-pytorch    作者:vvanirudh    | 项目源码 | 文件源码
def forward(self, h_temporal, h_spatials):
        '''
        Forward pass for the model
        params:
        h_temporal : Hidden state of the temporal edgeRNN
        h_spatials : Hidden states of all spatial edgeRNNs connected to the node.
        '''
        # Number of spatial edges
        num_edges = h_spatials.size()[0]

        # Embed the temporal edgeRNN hidden state
        temporal_embed = self.temporal_edge_layer(h_temporal)
        temporal_embed = temporal_embed.squeeze(0)

        # Embed the spatial edgeRNN hidden states
        spatial_embed = self.spatial_edge_layer(h_spatials)

        # Dot based attention
        attn = torch.mv(spatial_embed, temporal_embed)

        # Variable length
        temperature = num_edges / np.sqrt(self.attention_size)
        attn = torch.mul(attn, temperature)

        # Softmax
        attn = torch.nn.functional.softmax(attn)

        # Compute weighted value
        weighted_value = torch.mv(torch.t(h_spatials), attn)

        return weighted_value, attn
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def accGradParameters(self, input, gradOutput, scale=1):
        self.network.accGradParameters([input, self.partition], gradOutput, scale)
        if self.bias is not None:
            if self.buffer is None:
                self.buffer = input.new()
            self.buffer.resize_(gradOutput.size(1))
            torch.mv(gradOutput.t(), self.addBuffer, out=self.buffer).mul_(scale)
            self.gradBias.index_add_(
                1, self.partition, self.buffer.view(1, self.buffer.nelement())
            )
项目:qpth    作者:locuslab    | 项目源码 | 文件源码
def solve_kkt(U_Q, d, G, A, U_S, rx, rs, rz, ry, dbg=False):
    """ Solve KKT equations for the affine step"""
    nineq, nz, neq, _ = get_sizes(G, A)

    invQ_rx = torch.potrs(rx.view(-1, 1), U_Q).view(-1)
    if neq > 0:
        h = torch.cat([torch.mv(A, invQ_rx) - ry,
                       torch.mv(G, invQ_rx) + rs / d - rz], 0)
    else:
        h = torch.mv(G, invQ_rx) + rs / d - rz

    w = -torch.potrs(h.view(-1, 1), U_S).view(-1)

    g1 = -rx - torch.mv(G.t(), w[neq:])
    if neq > 0:
        g1 -= torch.mv(A.t(), w[:neq])
    g2 = -rs - w[neq:]

    dx = torch.potrs(g1.view(-1, 1), U_Q).view(-1)
    ds = g2 / d
    dz = w[neq:]
    dy = w[:neq] if neq > 0 else None

    # if np.all(np.array([x.norm() for x in [rx, rs, rz, ry]]) != 0):
    if dbg:
        import IPython
        import sys
        IPython.embed()
        sys.exit(-1)

    # if rs.norm() > 0: import IPython, sys; IPython.embed(); sys.exit(-1)
    return dx, ds, dz, dy
项目:qpth    作者:locuslab    | 项目源码 | 文件源码
def factor_solve_kkt(Q, D, G, A, rx, rs, rz, ry):
    nineq, nz, neq, _ = get_sizes(G, A)

    if neq > 0:
        H_ = torch.cat([torch.cat([Q, torch.zeros(nz, nineq).type_as(Q)], 1),
                        torch.cat([torch.zeros(nineq, nz).type_as(Q), D], 1)], 0)
        A_ = torch.cat([torch.cat([G, torch.eye(nineq).type_as(Q)], 1),
                        torch.cat([A, torch.zeros(neq, nineq).type_as(Q)], 1)], 0)
        g_ = torch.cat([rx, rs], 0)
        h_ = torch.cat([rz, ry], 0)
    else:
        H_ = torch.cat([torch.cat([Q, torch.zeros(nz, nineq).type_as(Q)], 1),
                        torch.cat([torch.zeros(nineq, nz).type_as(Q), D], 1)], 0)
        A_ = torch.cat([G, torch.eye(nineq).type_as(Q)], 1)
        g_ = torch.cat([rx, rs], 0)
        h_ = rz

    U_H_ = torch.potrf(H_)

    invH_A_ = torch.potrs(A_.t(), U_H_)
    invH_g_ = torch.potrs(g_.view(-1, 1), U_H_).view(-1)

    S_ = torch.mm(A_, invH_A_)
    U_S_ = torch.potrf(S_)
    t_ = torch.mv(A_, invH_g_).view(-1, 1) - h_
    w_ = -torch.potrs(t_, U_S_).view(-1)
    v_ = torch.potrs(-g_.view(-1, 1) - torch.mv(A_.t(), w_), U_H_).view(-1)

    return v_[:nz], v_[nz:], w_[:nineq], w_[nineq:] if neq > 0 else None
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def accGradParameters(self, input, gradOutput, scale=1):
        self.network.accGradParameters([input, self.partition], gradOutput, scale)
        if self.bias is not None:
            if self.buffer is None:
                self.buffer = input.new()
            self.buffer.resize_(gradOutput.size(1))
            torch.mv(gradOutput.t(), self.addBuffer, out=self.buffer).mul_(scale)
            self.gradBias.index_add_(
                1, self.partition, self.buffer.view(1, self.buffer.nelement())
            )
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_mv(self):
        m1 = torch.randn(100, 100)
        v1 = torch.randn(100)

        res1 = torch.mv(m1, v1)
        res2 = res1.clone().zero_()
        for i, j in iter_indices(m1):
            res2[i] += m1[i][j] * v1[j]

        self.assertEqual(res1, res2)
项目:ktorch    作者:farizrahman4u    | 项目源码 | 文件源码
def dot(x, y):
    def _dot(X):
        x, y = X
        x_ndim = ndim(x)
        y_ndim = ndim(y)
        if x_ndim == 2 and y_ndim == 2:
            return torch.mm(x, y)
        if x_ndim == 2 and y_ndim == 1:
            return torch.mv(x, y)
        if x_ndim == 1 and y_ndim == 2:
            return torch.mv(y, x)
        if x_ndim == 1 and y_ndim == 1:
            return torch.dot(x, y)
        else:
            raise Exception('Unsupported tensor ranks for dot operation : ' + str(x_ndim) + ' and ' + str(y_ndim) + '.')

    def _compute_output_shape(X):
        x, y = _get_shape(X[0]), _get_shape(X[1])
        x_ndim = len(x)
        y_ndim = len(y)
        if x_ndim == 2 and y_ndim == 2:
            return (x[0], y[1])
        if x_ndim == 2 and y_ndim == 1:
            return (x[0],)
        if x_ndim == 1 and y_ndim == 2:
            return (y[0],)
        if x_ndim == 1 and y_ndim == 1:
            return (0,)

    return get_op(_dot, output_shape=_compute_output_shape)([x, y])
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def test_back():
    npr.seed(1)
    nBatch, nz, neq, nineq = 1, 10, 1, 3
    # nz, neq, nineq = 3,3,3

    L = np.tril(np.random.randn(nz,nz)) + 2.*np.eye(nz,nz)
    Q = L.dot(L.T)+1e-4*np.eye(nz)
    G = 100.*npr.randn(nineq,nz)
    A = 100.*npr.randn(neq,nz)
    z0 = 1.*npr.randn(nz)
    s0 = 100.*np.ones(nineq)
    s0[:nineq//2] = 1e-6
    # print(np.linalg.norm(L))
    # print(np.linalg.norm(G))
    # print(np.linalg.norm(A))
    # print(np.linalg.norm(z0))
    # print(np.linalg.norm(s0))

    p = npr.randn(nBatch,nz)
    # print(np.linalg.norm(p))
    truez = npr.randn(nBatch,nz)

    af = adact.AdactFunction()
    zhat_0, nu_0, lam_0 = af.forward_single_np(p[0], L, G, A, z0, s0)
    dl_dzhat_0 = zhat_0-truez[0]
    S = Solver(L, A, G, z0, s0, 1e-8)
    S.reinit(lam_0, zhat_0)
    dp_0, dL_0, dG_0, dA_0, dz0_0, ds0_0 = af.backward_single_np_solver(
        S, zhat_0, nu_0, lam_0, dl_dzhat_0, L, G, A, z0, s0)
    # zhat_1, nu_1, lam_1 = af.forward_single_np(p[1], L, G, A, z0, s0)
    # dl_dzhat_1 = zhat_1-truez[1]
    # S.reinit(lam_1, zhat_1)
    # dp_1, dL_1, dG_1, dA_1, dz0_1, ds0_1 = af.backward_single_np_solver(
    #     S, zhat_1, nu_1, lam_1, dl_dzhat_1, L, G, A, z0, s0)

    p, L, G, A, z0, s0, truez = [torch.DoubleTensor(x) for x in [p, L, G, A, z0, s0, truez]]
    Q = torch.mm(L, L.t())+0.001*torch.eye(nz).type_as(L)
    if cuda:
        p, L, Q, G, A, z0, s0, truez = [x.cuda() for x in [p, L, Q, G, A, z0, s0, truez]]
    p, L, G, A, z0, s0 = [Variable(x) for x in [p, L, G, A, z0, s0]]
    for x in [p, L, G, A, z0, s0]: x.requires_grad = True

    # Q_LU, S_LU, R = aip.pre_factor_kkt_batch(Q, G, A, nBatch)
    # b = torch.mv(A, z0) if neq > 0 else None
    # h = torch.mv(G, z0)+s0
    # zhat_b, nu_b, lam_b = aip.forward_batch(p, Q, G, A, b, h, Q_LU, S_LU, R)

    zhats = af(p, L, G, A, z0, s0)
    dl_dzhat = zhats.data - truez
    zhats.backward(dl_dzhat)
    dp, dL, dG, dA, dz0, ds0 = [x.grad.clone() for x in [p, L, G, A, z0, s0]]
项目:optnet    作者:locuslab    | 项目源码 | 文件源码
def prof_instance(nz, neq, nineq, nBatch, cuda):
    L = np.tril(npr.uniform(0,1, (nz,nz))) + np.eye(nz,nz)
    G = npr.randn(nineq,nz)
    A = npr.randn(neq,nz)
    z0 = npr.randn(nz)
    s0 = np.ones(nineq)
    p = npr.randn(nBatch,nz)

    p, L, G, A, z0, s0 = [torch.Tensor(x) for x in [p, L, G, A, z0, s0]]
    Q = torch.mm(L, L.t())+0.001*torch.eye(nz).type_as(L)
    if cuda:
        p, L, Q, G, A, z0, s0 = [x.cuda() for x in [p, L, Q, G, A, z0, s0]]
    b = torch.mv(A, z0) if neq > 0 else None
    h = torch.mv(G, z0)+s0

    af = adact.AdactFunction()

    single_results = []
    start = time.time()
    U_Q, U_S, R = aip.pre_factor_kkt(Q, G, A)
    for i in range(nBatch):
        single_results.append(aip.forward_single(p[i], Q, G, A, b, h, U_Q, U_S, R))
    single_time = time.time()-start

    start = time.time()
    Q_LU, S_LU, R = aip.pre_factor_kkt_batch(Q, G, A, nBatch)
    zhat_b, nu_b, lam_b = aip.forward_batch(p, Q, G, A, b, h, Q_LU, S_LU, R)
    batched_time = time.time()-start

    zhat_diff = (single_results[0][0] - zhat_b[0]).norm()
    lam_diff = (single_results[0][2] - lam_b[0]).norm()
    eps = 0.1 # Pretty relaxed.
    if zhat_diff > eps or lam_diff > eps:
        print('===========')
        print("Warning: Single and batched solutions might not match.")
        print("  + zhat_diff: {}".format(zhat_diff))
        print("  + lam_diff: {}".format(lam_diff))
        print("  + (nz, neq, nineq, nBatch) = ({}, {}, {}, {})".format(
            nz, neq, nineq, nBatch))
        print('===========')

    return single_time, batched_time
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_functional_blas(self):
        def compare(fn, *args):
            unpacked_args = tuple(arg.data if isinstance(arg, Variable) else arg
                                  for arg in args)
            unpacked_result = fn(*unpacked_args)
            packed_result = fn(*args).data
            # if non-Variable torch function returns a scalar, compare to scalar
            if not torch.is_tensor(unpacked_result):
                assert packed_result.dim() == 1
                assert packed_result.nelement() == 1
                packed_result = packed_result[0]
            self.assertEqual(packed_result, unpacked_result)

        def test_blas_add(fn, x, y, z):
            # Checks all signatures
            compare(fn, x, y, z)
            compare(fn, 0.5, x, y, z)
            compare(fn, 0.5, x, 0.25, y, z)

        def test_blas(fn, x, y):
            compare(fn, x, y)

        test_blas(torch.mm, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10, 4)))
        test_blas_add(torch.addmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10, 4)))
        test_blas(torch.bmm, Variable(torch.randn(4, 2, 10)),
                  Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.addbmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.baddbmm, Variable(torch.randn(4, 2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas(torch.mv, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10)))
        test_blas_add(torch.addmv, Variable(torch.randn(2)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10)))
        test_blas(torch.ger, Variable(torch.randn(5)),
                  Variable(torch.randn(6)))
        test_blas_add(torch.addr, Variable(torch.randn(5, 6)),
                      Variable(torch.randn(5)), Variable(torch.randn(6)))
        test_blas(torch.matmul, Variable(torch.randn(6)), Variable(torch.randn(6)))
        test_blas(torch.matmul, Variable(torch.randn(10, 4)), Variable(torch.randn(4)))
        test_blas(torch.matmul, Variable(torch.randn(5)), Variable(torch.randn(5, 6)))
        test_blas(torch.matmul, Variable(torch.randn(2, 10)), Variable(torch.randn(10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(5, 2, 10)), Variable(torch.randn(5, 10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(3, 5, 2, 10)), Variable(torch.randn(3, 5, 10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(3, 5, 2, 10)), Variable(torch.randn(10)))
        test_blas(torch.matmul, Variable(torch.randn(10)), Variable(torch.randn(3, 5, 10, 4)))
项目:awd-lstm-lm    作者:salesforce    | 项目源码 | 文件源码
def evaluate(data_source, batch_size=10, window=args.window):
    # Turn on evaluation mode which disables dropout.
    if args.model == 'QRNN': model.reset()
    model.eval()
    total_loss = 0
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(batch_size)
    next_word_history = None
    pointer_history = None
    for i in range(0, data_source.size(0) - 1, args.bptt):
        if i > 0: print(i, len(data_source), math.exp(total_loss / i))
        data, targets = get_batch(data_source, i, evaluation=True, args=args)
        output, hidden, rnn_outs, _ = model(data, hidden, return_h=True)
        rnn_out = rnn_outs[-1].squeeze()
        output_flat = output.view(-1, ntokens)
        ###
        # Fill pointer history
        start_idx = len(next_word_history) if next_word_history is not None else 0
        next_word_history = torch.cat([one_hot(t.data[0], ntokens) for t in targets]) if next_word_history is None else torch.cat([next_word_history, torch.cat([one_hot(t.data[0], ntokens) for t in targets])])
        #print(next_word_history)
        pointer_history = Variable(rnn_out.data) if pointer_history is None else torch.cat([pointer_history, Variable(rnn_out.data)], dim=0)
        #print(pointer_history)
        ###
        # Built-in cross entropy
        # total_loss += len(data) * criterion(output_flat, targets).data[0]
        ###
        # Manual cross entropy
        # softmax_output_flat = torch.nn.functional.softmax(output_flat)
        # soft = torch.gather(softmax_output_flat, dim=1, index=targets.view(-1, 1))
        # entropy = -torch.log(soft)
        # total_loss += len(data) * entropy.mean().data[0]
        ###
        # Pointer manual cross entropy
        loss = 0
        softmax_output_flat = torch.nn.functional.softmax(output_flat)
        for idx, vocab_loss in enumerate(softmax_output_flat):
            p = vocab_loss
            if start_idx + idx > window:
                valid_next_word = next_word_history[start_idx + idx - window:start_idx + idx]
                valid_pointer_history = pointer_history[start_idx + idx - window:start_idx + idx]
                logits = torch.mv(valid_pointer_history, rnn_out[idx])
                theta = args.theta
                ptr_attn = torch.nn.functional.softmax(theta * logits).view(-1, 1)
                ptr_dist = (ptr_attn.expand_as(valid_next_word) * valid_next_word).sum(0).squeeze()
                lambdah = args.lambdasm
                p = lambdah * ptr_dist + (1 - lambdah) * vocab_loss
            ###
            target_loss = p[targets[idx].data]
            loss += (-torch.log(target_loss)).data[0]
        total_loss += loss / batch_size
        ###
        hidden = repackage_hidden(hidden)
        next_word_history = next_word_history[-window:]
        pointer_history = pointer_history[-window:]
    return total_loss / len(data_source)

# Load the best saved model.
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_functional_blas(self):
        def compare(fn, *args):
            unpacked_args = tuple(arg.data if isinstance(arg, Variable) else arg
                                  for arg in args)
            unpacked_result = fn(*unpacked_args)
            packed_result = fn(*args).data
            # if non-Variable torch function returns a scalar, compare to scalar
            if not torch.is_tensor(unpacked_result):
                assert packed_result.dim() == 1
                assert packed_result.nelement() == 1
                packed_result = packed_result[0]
            self.assertEqual(packed_result, unpacked_result)

        def test_blas_add(fn, x, y, z):
            # Checks all signatures
            compare(fn, x, y, z)
            compare(fn, 0.5, x, y, z)
            compare(fn, 0.5, x, 0.25, y, z)

        def test_blas(fn, x, y):
            compare(fn, x, y)

        test_blas(torch.mm, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10, 4)))
        test_blas_add(torch.addmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10, 4)))
        test_blas(torch.bmm, Variable(torch.randn(4, 2, 10)),
                  Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.addbmm, Variable(torch.randn(2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas_add(torch.baddbmm, Variable(torch.randn(4, 2, 4)),
                      Variable(torch.randn(4, 2, 10)), Variable(torch.randn(4, 10, 4)))
        test_blas(torch.mv, Variable(torch.randn(2, 10)),
                  Variable(torch.randn(10)))
        test_blas_add(torch.addmv, Variable(torch.randn(2)),
                      Variable(torch.randn(2, 10)), Variable(torch.randn(10)))
        test_blas(torch.ger, Variable(torch.randn(5)),
                  Variable(torch.randn(6)))
        test_blas_add(torch.addr, Variable(torch.randn(5, 6)),
                      Variable(torch.randn(5)), Variable(torch.randn(6)))
        test_blas(torch.matmul, Variable(torch.randn(6)), Variable(torch.randn(6)))
        test_blas(torch.matmul, Variable(torch.randn(10, 4)), Variable(torch.randn(4)))
        test_blas(torch.matmul, Variable(torch.randn(5)), Variable(torch.randn(5, 6)))
        test_blas(torch.matmul, Variable(torch.randn(2, 10)), Variable(torch.randn(10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(5, 2, 10)), Variable(torch.randn(5, 10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(3, 5, 2, 10)), Variable(torch.randn(3, 5, 10, 4)))
        test_blas(torch.matmul, Variable(torch.randn(3, 5, 2, 10)), Variable(torch.randn(10)))
        test_blas(torch.matmul, Variable(torch.randn(10)), Variable(torch.randn(3, 5, 10, 4)))