Python torch 模块,acos() 实例源码

我们从Python开源项目中,提取了以下19个代码示例,用于说明如何使用torch.acos()

项目:lr-gan.pytorch    作者:jwyang    | 项目源码 | 文件源码
def forward(self, input1):
        self.batchgrid3d = torch.zeros(torch.Size([input1.size(0)]) + self.grid3d.size())

        for i in range(input1.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)
        #print(self.batchgrid3d)

        x = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,0:4]), 3)
        y = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,4:8]), 3)
        z = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,8:]), 3)
        #print(x)
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi


        output = torch.cat([theta,phi], 3)

        return output
项目:faster-rcnn.pytorch    作者:jwyang    | 项目源码 | 文件源码
def forward(self, input1):
        self.batchgrid3d = torch.zeros(torch.Size([input1.size(0)]) + self.grid3d.size())

        for i in range(input1.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)
        #print(self.batchgrid3d)

        x = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,0:4]), 3)
        y = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,4:8]), 3)
        z = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,8:]), 3)
        #print(x)
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi


        output = torch.cat([theta,phi], 3)

        return output
项目:intel-cervical-cancer    作者:wangg12    | 项目源码 | 文件源码
def forward(self, input1):
        self.batchgrid3d = torch.zeros(torch.Size([input1.size(0)]) + self.grid3d.size())

        for i in range(input1.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)
        #print(self.batchgrid3d)

        x = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,0:4]), 3)
        y = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,4:8]), 3)
        z = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,8:]), 3)
        #print(x)
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi


        output = torch.cat([theta,phi], 3)

        return output
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def test_acos(self):
        self._testMath(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan'))
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def test_acos(self):
        self._testMath(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan'))
项目:lr-gan.pytorch    作者:jwyang    | 项目源码 | 文件源码
def forward(self, input1, input2):
        self.batchgrid3d = torch.zeros(torch.Size([input1.size(0)]) + self.grid3d.size())

        for i in range(input1.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([input1.size(0)]) + self.grid.size())

        for i in range(input1.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        #print(self.batchgrid3d)

        x = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,0:4]), 3)
        y = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,4:8]), 3)
        z = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,8:]), 3)
        #print(x)
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi

        input_u = input2.view(-1,1,1,1).repeat(1,self.height, self.width,1)

        output = torch.cat([theta,phi], 3)

        output1 = torch.atan(torch.tan(np.pi/2.0*(output[:,:,:,1:2] + self.batchgrid[:,:,:,2:] * input_u[:,:,:,:])))  /(np.pi/2)
        output2 = torch.cat([output[:,:,:,0:1], output1], 3)

        return output2
项目:lr-gan.pytorch    作者:jwyang    | 项目源码 | 文件源码
def forward(self, depth, trans0, trans1, rotate):
        self.batchgrid3d = torch.zeros(torch.Size([depth.size(0)]) + self.grid3d.size())

        for i in range(depth.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([depth.size(0)]) + self.grid.size())

        for i in range(depth.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        x = self.batchgrid3d[:,:,:,0:1] * depth + trans0.view(-1,1,1,1).repeat(1, self.height, self.width, 1)

        y = self.batchgrid3d[:,:,:,1:2] * depth + trans1.view(-1,1,1,1).repeat(1, self.height, self.width, 1)
        z = self.batchgrid3d[:,:,:,2:3] * depth
        #print(x.size(), y.size(), z.size())
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi

        #print(theta.size(), phi.size())


        input_u = rotate.view(-1,1,1,1).repeat(1,self.height, self.width,1)

        output = torch.cat([theta,phi], 3)
        #print(output.size())

        output1 = torch.atan(torch.tan(np.pi/2.0*(output[:,:,:,1:2] + self.batchgrid[:,:,:,2:] * input_u[:,:,:,:])))  /(np.pi/2)
        output2 = torch.cat([output[:,:,:,0:1], output1], 3)

        return output2
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_acos(self):
        self._testMath(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan'))
项目:PoseNet    作者:bellatoris    | 项目源码 | 文件源码
def rotation_error(input, target):
    x1 = torch.norm(input, dim=1)
    x2 = torch.norm(target, dim=1)

    x1 = torch.div(input, torch.stack((x1, x1, x1, x1), dim=1))
    x2 = torch.div(target, torch.stack((x2, x2, x2, x2), dim=1))
    d = torch.abs(torch.sum(x1 * x2, dim=1))
    theta = 2 * torch.acos(d) * 180/math.pi
    theta = torch.mean(theta)

    return theta
项目:PoseNet    作者:bellatoris    | 项目源码 | 文件源码
def rotation_error(input, target):
    """Gets cosine distance between input and target """
    x1 = torch.norm(input, dim=1)
    x2 = torch.norm(target, dim=1)

    x1 = torch.div(input, torch.stack((x1, x1, x1, x1), dim=1))
    x2 = torch.div(target, torch.stack((x2, x2, x2, x2), dim=1))
    d = torch.abs(torch.sum(x1 * x2, dim=1))
    theta = 2 * torch.acos(d) * 180/math.pi
    theta = torch.mean(theta)

    return theta
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_acos(self):
        self._testMath(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan'))
项目:faster-rcnn.pytorch    作者:jwyang    | 项目源码 | 文件源码
def forward(self, input1, input2):
        self.batchgrid3d = torch.zeros(torch.Size([input1.size(0)]) + self.grid3d.size())

        for i in range(input1.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([input1.size(0)]) + self.grid.size())

        for i in range(input1.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        #print(self.batchgrid3d)

        x = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,0:4]), 3)
        y = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,4:8]), 3)
        z = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,8:]), 3)
        #print(x)
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi

        input_u = input2.view(-1,1,1,1).repeat(1,self.height, self.width,1)

        output = torch.cat([theta,phi], 3)

        output1 = torch.atan(torch.tan(np.pi/2.0*(output[:,:,:,1:2] + self.batchgrid[:,:,:,2:] * input_u[:,:,:,:])))  /(np.pi/2)
        output2 = torch.cat([output[:,:,:,0:1], output1], 3)

        return output2
项目:faster-rcnn.pytorch    作者:jwyang    | 项目源码 | 文件源码
def forward(self, depth, trans0, trans1, rotate):
        self.batchgrid3d = torch.zeros(torch.Size([depth.size(0)]) + self.grid3d.size())

        for i in range(depth.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([depth.size(0)]) + self.grid.size())

        for i in range(depth.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        x = self.batchgrid3d[:,:,:,0:1] * depth + trans0.view(-1,1,1,1).repeat(1, self.height, self.width, 1)

        y = self.batchgrid3d[:,:,:,1:2] * depth + trans1.view(-1,1,1,1).repeat(1, self.height, self.width, 1)
        z = self.batchgrid3d[:,:,:,2:3] * depth
        #print(x.size(), y.size(), z.size())
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi

        #print(theta.size(), phi.size())


        input_u = rotate.view(-1,1,1,1).repeat(1,self.height, self.width,1)

        output = torch.cat([theta,phi], 3)
        #print(output.size())

        output1 = torch.atan(torch.tan(np.pi/2.0*(output[:,:,:,1:2] + self.batchgrid[:,:,:,2:] * input_u[:,:,:,:])))  /(np.pi/2)
        output2 = torch.cat([output[:,:,:,0:1], output1], 3)

        return output2
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_acos(self):
        self._testMath(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan'))
项目:intel-cervical-cancer    作者:wangg12    | 项目源码 | 文件源码
def forward(self, input1, input2):
        self.batchgrid3d = torch.zeros(torch.Size([input1.size(0)]) + self.grid3d.size())

        for i in range(input1.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([input1.size(0)]) + self.grid.size())

        for i in range(input1.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        #print(self.batchgrid3d)

        x = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,0:4]), 3)
        y = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,4:8]), 3)
        z = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,8:]), 3)
        #print(x)
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi

        input_u = input2.view(-1,1,1,1).repeat(1,self.height, self.width,1)

        output = torch.cat([theta,phi], 3)

        output1 = torch.atan(torch.tan(np.pi/2.0*(output[:,:,:,1:2] + self.batchgrid[:,:,:,2:] * input_u[:,:,:,:])))  /(np.pi/2)
        output2 = torch.cat([output[:,:,:,0:1], output1], 3)

        return output2
项目:intel-cervical-cancer    作者:wangg12    | 项目源码 | 文件源码
def forward(self, depth, trans0, trans1, rotate):
        self.batchgrid3d = torch.zeros(torch.Size([depth.size(0)]) + self.grid3d.size())

        for i in range(depth.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([depth.size(0)]) + self.grid.size())

        for i in range(depth.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        x = self.batchgrid3d[:,:,:,0:1] * depth + trans0.view(-1,1,1,1).repeat(1, self.height, self.width, 1)

        y = self.batchgrid3d[:,:,:,1:2] * depth + trans1.view(-1,1,1,1).repeat(1, self.height, self.width, 1)
        z = self.batchgrid3d[:,:,:,2:3] * depth
        #print(x.size(), y.size(), z.size())
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi

        #print(theta.size(), phi.size())


        input_u = rotate.view(-1,1,1,1).repeat(1,self.height, self.width,1)

        output = torch.cat([theta,phi], 3)
        #print(output.size())

        output1 = torch.atan(torch.tan(np.pi/2.0*(output[:,:,:,1:2] + self.batchgrid[:,:,:,2:] * input_u[:,:,:,:])))  /(np.pi/2)
        output2 = torch.cat([output[:,:,:,0:1], output1], 3)

        return output2
项目:lr-gan.pytorch    作者:jwyang    | 项目源码 | 文件源码
def forward(self, depth, trans0, trans1, rotate):
        self.batchgrid3d = torch.zeros(torch.Size([depth.size(0)]) + self.grid3d.size())

        for i in range(depth.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([depth.size(0)]) + self.grid.size())

        for i in range(depth.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        if depth.is_cuda:
            self.batchgrid = self.batchgrid.cuda()
            self.batchgrid3d = self.batchgrid3d.cuda()


        x_ = self.batchgrid3d[:,:,:,0:1] * depth + trans0.view(-1,1,1,1).repeat(1, self.height, self.width, 1)

        y_ = self.batchgrid3d[:,:,:,1:2] * depth + trans1.view(-1,1,1,1).repeat(1, self.height, self.width, 1)
        z = self.batchgrid3d[:,:,:,2:3] * depth
        #print(x.size(), y.size(), z.size())

        rotate_z = rotate.view(-1,1,1,1).repeat(1,self.height, self.width,1) * np.pi

        x = x_ * torch.cos(rotate_z) - y_ * torch.sin(rotate_z)
        y = x_ * torch.sin(rotate_z) + y_ * torch.cos(rotate_z)


        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)

        if depth.is_cuda:
            phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.cuda.FloatTensor) * (y.ge(0).type(torch.cuda.FloatTensor) - y.lt(0).type(torch.cuda.FloatTensor))
        else:
            phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))


        phi = phi/np.pi

        output = torch.cat([theta,phi], 3)
        return output
项目:faster-rcnn.pytorch    作者:jwyang    | 项目源码 | 文件源码
def forward(self, depth, trans0, trans1, rotate):
        self.batchgrid3d = torch.zeros(torch.Size([depth.size(0)]) + self.grid3d.size())

        for i in range(depth.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([depth.size(0)]) + self.grid.size())

        for i in range(depth.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        if depth.is_cuda:
            self.batchgrid = self.batchgrid.cuda()
            self.batchgrid3d = self.batchgrid3d.cuda()


        x_ = self.batchgrid3d[:,:,:,0:1] * depth + trans0.view(-1,1,1,1).repeat(1, self.height, self.width, 1)

        y_ = self.batchgrid3d[:,:,:,1:2] * depth + trans1.view(-1,1,1,1).repeat(1, self.height, self.width, 1)
        z = self.batchgrid3d[:,:,:,2:3] * depth
        #print(x.size(), y.size(), z.size())

        rotate_z = rotate.view(-1,1,1,1).repeat(1,self.height, self.width,1) * np.pi

        x = x_ * torch.cos(rotate_z) - y_ * torch.sin(rotate_z)
        y = x_ * torch.sin(rotate_z) + y_ * torch.cos(rotate_z)


        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)

        if depth.is_cuda:
            phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.cuda.FloatTensor) * (y.ge(0).type(torch.cuda.FloatTensor) - y.lt(0).type(torch.cuda.FloatTensor))
        else:
            phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))


        phi = phi/np.pi

        output = torch.cat([theta,phi], 3)
        return output
项目:intel-cervical-cancer    作者:wangg12    | 项目源码 | 文件源码
def forward(self, depth, trans0, trans1, rotate):
        self.batchgrid3d = torch.zeros(torch.Size([depth.size(0)]) + self.grid3d.size())

        for i in range(depth.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([depth.size(0)]) + self.grid.size())

        for i in range(depth.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        if depth.is_cuda:
            self.batchgrid = self.batchgrid.cuda()
            self.batchgrid3d = self.batchgrid3d.cuda()


        x_ = self.batchgrid3d[:,:,:,0:1] * depth + trans0.view(-1,1,1,1).repeat(1, self.height, self.width, 1)

        y_ = self.batchgrid3d[:,:,:,1:2] * depth + trans1.view(-1,1,1,1).repeat(1, self.height, self.width, 1)
        z = self.batchgrid3d[:,:,:,2:3] * depth
        #print(x.size(), y.size(), z.size())

        rotate_z = rotate.view(-1,1,1,1).repeat(1,self.height, self.width,1) * np.pi

        x = x_ * torch.cos(rotate_z) - y_ * torch.sin(rotate_z)
        y = x_ * torch.sin(rotate_z) + y_ * torch.cos(rotate_z)


        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)

        if depth.is_cuda:
            phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.cuda.FloatTensor) * (y.ge(0).type(torch.cuda.FloatTensor) - y.lt(0).type(torch.cuda.FloatTensor))
        else:
            phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))


        phi = phi/np.pi

        output = torch.cat([theta,phi], 3)
        return output