Python torch 模块,renorm() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用torch.renorm()

项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def test_renorm(self):
        m1 = torch.randn(10,5)
        res1 = torch.Tensor()

        def renorm(matrix, value, dim, max_norm):
            m1 = matrix.transpose(dim, 0).contiguous()
            # collapse non-dim dimensions.
            m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
            norms = m2.norm(value, 1)
            # clip
            new_norms = norms.clone()
            new_norms[torch.gt(norms, max_norm)] = max_norm
            new_norms.div_(norms.add_(1e-7))
            # renormalize
            m1.mul_(new_norms.expand_as(m1))
            return m1.transpose(dim, 0)

        # note that the axis fed to torch.renorm is different (2~=1)
        maxnorm = m1.norm(2, 1).mean()
        m2 = renorm(m1, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        self.assertEqual(m1, m2, 1e-5)
        self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)

        m1 = torch.randn(3, 4, 5)
        m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        maxnorm = m2.norm(2, 0).mean()
        m2 = renorm(m2, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        self.assertEqual(m3, m2)
        self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
项目:braindecode    作者:robintibor    | 项目源码 | 文件源码
def apply(self, model):
        last_weight = None
        for name, module in list(model.named_children()):
            if hasattr(module, 'weight') and (
                    not module.__class__.__name__.startswith('BatchNorm')):
                module.weight.data = th.renorm(module.weight.data,2,0,maxnorm=2)
                last_weight = module.weight
        if last_weight is not None:
            last_weight.data = th.renorm(last_weight.data,2,0,maxnorm=0.5)
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def test_renorm(self):
        m1 = torch.randn(10, 5)
        res1 = torch.Tensor()

        def renorm(matrix, value, dim, max_norm):
            m1 = matrix.transpose(dim, 0).contiguous()
            # collapse non-dim dimensions.
            m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
            norms = m2.norm(value, 1)
            # clip
            new_norms = norms.clone()
            new_norms[torch.gt(norms, max_norm)] = max_norm
            new_norms.div_(norms.add_(1e-7))
            # renormalize
            m1.mul_(new_norms.expand_as(m1))
            return m1.transpose(dim, 0)

        # note that the axis fed to torch.renorm is different (2~=1)
        maxnorm = m1.norm(2, 1).mean()
        m2 = renorm(m1, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        self.assertEqual(m1, m2, 1e-5)
        self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)

        m1 = torch.randn(3, 4, 5)
        m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        maxnorm = m2.norm(2, 0).mean()
        m2 = renorm(m2, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        self.assertEqual(m3, m2)
        self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_renorm(self):
        m1 = torch.randn(10, 5)
        res1 = torch.Tensor()

        def renorm(matrix, value, dim, max_norm):
            m1 = matrix.transpose(dim, 0).contiguous()
            # collapse non-dim dimensions.
            m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
            norms = m2.norm(value, 1, True)
            # clip
            new_norms = norms.clone()
            new_norms[torch.gt(norms, max_norm)] = max_norm
            new_norms.div_(norms.add_(1e-7))
            # renormalize
            m1.mul_(new_norms.expand_as(m1))
            return m1.transpose(dim, 0)

        # note that the axis fed to torch.renorm is different (2~=1)
        maxnorm = m1.norm(2, 1).mean()
        m2 = renorm(m1, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        self.assertEqual(m1, m2, 1e-5)
        self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)

        m1 = torch.randn(3, 4, 5)
        m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        maxnorm = m2.norm(2, 0).mean()
        m2 = renorm(m2, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        self.assertEqual(m3, m2)
        self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_renorm(self):
        m1 = torch.randn(10, 5)
        res1 = torch.Tensor()

        def renorm(matrix, value, dim, max_norm):
            m1 = matrix.transpose(dim, 0).contiguous()
            # collapse non-dim dimensions.
            m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
            norms = m2.norm(value, 1, True)
            # clip
            new_norms = norms.clone()
            new_norms[torch.gt(norms, max_norm)] = max_norm
            new_norms.div_(norms.add_(1e-7))
            # renormalize
            m1.mul_(new_norms.expand_as(m1))
            return m1.transpose(dim, 0)

        # note that the axis fed to torch.renorm is different (2~=1)
        maxnorm = m1.norm(2, 1).mean()
        m2 = renorm(m1, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        self.assertEqual(m1, m2, 1e-5)
        self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)

        m1 = torch.randn(3, 4, 5)
        m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        maxnorm = m2.norm(2, 0).mean()
        m2 = renorm(m2, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        self.assertEqual(m3, m2)
        self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
项目:torchsample    作者:ncullen93    | 项目源码 | 文件源码
def __call__(self, module):
        w = module.weight.data
        module.weight.data = th.renorm(w, 2, self.axis, self.value)
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_renorm(self):
        m1 = torch.randn(10, 5)
        res1 = torch.Tensor()

        def renorm(matrix, value, dim, max_norm):
            m1 = matrix.transpose(dim, 0).contiguous()
            # collapse non-dim dimensions.
            m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
            norms = m2.norm(value, 1, True)
            # clip
            new_norms = norms.clone()
            new_norms[torch.gt(norms, max_norm)] = max_norm
            new_norms.div_(norms.add_(1e-7))
            # renormalize
            m1.mul_(new_norms.expand_as(m1))
            return m1.transpose(dim, 0)

        # note that the axis fed to torch.renorm is different (2~=1)
        maxnorm = m1.norm(2, 1).mean()
        m2 = renorm(m1, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        self.assertEqual(m1, m2, 1e-5)
        self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)

        m1 = torch.randn(3, 4, 5)
        m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        maxnorm = m2.norm(2, 0).mean()
        m2 = renorm(m2, 2, 1, maxnorm)
        m1.renorm_(2, 1, maxnorm)
        m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
        self.assertEqual(m3, m2)
        self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))