我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用torch.is_storage()。
def _wrap_function(function, ffi): @wraps(function) def safe_call(*args, **kwargs): args = tuple(ffi.cast(_torch_to_cffi.get(type(arg), 'void') + '*', arg._cdata) if torch.is_tensor(arg) or torch.is_storage(arg) else arg for arg in args) args = (function,) + args result = torch._C._safe_call(*args, **kwargs) if isinstance(result, ffi.CData): typeof = ffi.typeof(result) if typeof.kind == 'pointer': cdata = int(ffi.cast('uintptr_t', result)) cname = typeof.item.cname if cname in _cffi_to_torch: return _cffi_to_torch[cname](cdata=cdata) return result return safe_call
def to_gpu(obj, type_map={}): if torch.is_tensor(obj): t = type_map.get(type(obj), get_gpu_type(type(obj))) return obj.clone().type(t) elif torch.is_storage(obj): return obj.new().resize_(obj.size()).copy_(obj) elif isinstance(obj, Variable): assert obj.creator is None t = type_map.get(type(obj.data), get_gpu_type(type(obj.data))) return Variable(obj.data.clone().type(t), requires_grad=obj.requires_grad) elif isinstance(obj, list): return [to_gpu(o, type_map) for o in obj] elif isinstance(obj, tuple): return tuple(to_gpu(o, type_map) for o in obj) else: return deepcopy(obj)
def to_gpu(obj, type_map={}): if torch.is_tensor(obj): t = type_map.get(type(obj), get_gpu_type(type(obj))) return obj.clone().type(t) elif torch.is_storage(obj): return obj.new().resize_(obj.size()).copy_(obj) elif isinstance(obj, Variable): assert obj.is_leaf t = type_map.get(type(obj.data), get_gpu_type(type(obj.data))) return Variable(obj.data.clone().type( t), requires_grad=obj.requires_grad) elif isinstance(obj, list): return [to_gpu(o, type_map) for o in obj] elif isinstance(obj, tuple): return tuple(to_gpu(o, type_map) for o in obj) else: return deepcopy(obj)
def to_gpu(obj, type_map={}): if torch.is_tensor(obj): t = type_map.get(type(obj), get_gpu_type(type(obj))) return obj.clone().type(t) elif torch.is_storage(obj): return obj.new().resize_(obj.size()).copy_(obj) elif isinstance(obj, Variable): assert obj.is_leaf t = type_map.get(type(obj.data), get_gpu_type(type(obj.data))) return Variable(obj.data.clone().type(t), requires_grad=obj.requires_grad) elif isinstance(obj, list): return [to_gpu(o, type_map) for o in obj] elif isinstance(obj, tuple): return tuple(to_gpu(o, type_map) for o in obj) else: return deepcopy(obj)