Python torch 模块,numel() 实例源码

我们从Python开源项目中,提取了以下13个代码示例,用于说明如何使用torch.numel()

项目:YellowFin_Pytorch    作者:JianGoForIt    | 项目源码 | 文件源码
def grad_sparsity(self):
    global_state = self._global_state
    if self._iter == 0:
      global_state["sparsity_avg"] = 0.0
    non_zero_cnt = 0.0
    all_entry_cnt = 0.0
    for group in self._optimizer.param_groups:
      for p in group['params']:
        if p.grad is None:
          continue
        grad = p.grad.data
        grad_non_zero = grad.nonzero()
        if grad_non_zero.dim() > 0:
          non_zero_cnt += grad_non_zero.size()[0]
        all_entry_cnt += torch.numel(grad)
    beta = self._beta
    global_state["sparsity_avg"] = beta * global_state["sparsity_avg"] \
      + (1 - beta) * non_zero_cnt / float(all_entry_cnt)
    self._sparsity_avg = \
      global_state["sparsity_avg"] / self.zero_debias_factor()

    if self._verbose:
      logging.debug("sparsity %f, sparsity avg %f", non_zero_cnt / float(all_entry_cnt), self._sparsity_avg)

    return
项目:YellowFin_Pytorch    作者:JianGoForIt    | 项目源码 | 文件源码
def grad_sparsity(self):
    global_state = self._global_state
    if self._iter == 0:
      global_state["sparsity_avg"] = 0.0
    non_zero_cnt = 0.0
    all_entry_cnt = 0.0
    for group in self._optimizer.param_groups:
      for p in group['params']:
        if p.grad is None:
          continue
        grad = p.grad.data
        grad_non_zero = grad.nonzero()
        if grad_non_zero.dim() > 0:
          non_zero_cnt += grad_non_zero.size()[0]
        all_entry_cnt += torch.numel(grad)
    beta = self._beta
    global_state["sparsity_avg"] = beta * global_state["sparsity_avg"] \
      + (1 - beta) * non_zero_cnt / float(all_entry_cnt)
    self._sparsity_avg = \
      global_state["sparsity_avg"] / self.zero_debias_factor()

    if DEBUG:
      logging.debug("sparsity %f, sparsity avg %f", non_zero_cnt / float(all_entry_cnt), self._sparsity_avg)

    return
项目:kdnet.pytorch    作者:fxia22    | 项目源码 | 文件源码
def split_ps(point_set):
    #print point_set.size()
    num_points = point_set.size()[0]/2
    diff = point_set.max(dim=0)[0] - point_set.min(dim=0)[0]
    dim = torch.max(diff, dim = 1)[1][0,0]
    cut = torch.median(point_set[:,dim])[0][0]
    left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut))
    right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut))
    middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut))

    if torch.numel(left_idx) < num_points:
        left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0)
    if torch.numel(right_idx) < num_points:
        right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0)

    left_ps = torch.index_select(point_set, dim = 0, index = left_idx)
    right_ps = torch.index_select(point_set, dim = 0, index = right_idx)
    return left_ps, right_ps, dim
项目:kdnet.pytorch    作者:fxia22    | 项目源码 | 文件源码
def split_ps(point_set):
    #print point_set.size()
    num_points = point_set.size()[0]/2
    diff = point_set.max(dim=0)[0] - point_set.min(dim=0)[0]
    dim = torch.max(diff, dim = 1)[1][0,0]
    cut = torch.median(point_set[:,dim])[0][0]
    left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut))
    right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut))
    middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut))

    if torch.numel(left_idx) < num_points:
        left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0)
    if torch.numel(right_idx) < num_points:
        right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0)

    left_ps = torch.index_select(point_set, dim = 0, index = left_idx)
    right_ps = torch.index_select(point_set, dim = 0, index = right_idx)
    return left_ps, right_ps, dim
项目:kdnet.pytorch    作者:fxia22    | 项目源码 | 文件源码
def split_ps(point_set):
    #print point_set.size()
    num_points = point_set.size()[0]/2
    diff = point_set.max(dim=0, keepdim = True)[0] - point_set.min(dim=0, keepdim = True)[0]
    dim = torch.max(diff, dim = 1, keepdim = True)[1][0,0]
    cut = torch.median(point_set[:,dim], keepdim = True)[0][0]
    left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut))
    right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut))
    middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut))

    if torch.numel(left_idx) < num_points:
        left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0)
    if torch.numel(right_idx) < num_points:
        right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0)

    left_ps = torch.index_select(point_set, dim = 0, index = left_idx)
    right_ps = torch.index_select(point_set, dim = 0, index = right_idx)
    return left_ps, right_ps, dim
项目:kdnet.pytorch    作者:fxia22    | 项目源码 | 文件源码
def split_ps(point_set):
    #print point_set.size()
    num_points = point_set.size()[0]/2
    diff = point_set.max(dim=0)[0] - point_set.min(dim=0)[0]
    diff = diff[:3]
    dim = torch.max(diff, dim = 1)[1][0,0]
    cut = torch.median(point_set[:,dim])[0][0]
    left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut))
    right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut))
    middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut))

    if torch.numel(left_idx) < num_points:
        left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0)
    if torch.numel(right_idx) < num_points:
        right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0)

    left_ps = torch.index_select(point_set, dim = 0, index = left_idx)
    right_ps = torch.index_select(point_set, dim = 0, index = right_idx)
    return left_ps, right_ps, dim
项目:kdnet.pytorch    作者:fxia22    | 项目源码 | 文件源码
def split_ps(point_set):
    #print point_set.size()
    num_points = point_set.size()[0]/2
    diff = point_set.max(dim=0)[0] - point_set.min(dim=0)[0] 
    dim = torch.max(diff, dim = 1)[1][0,0]
    cut = torch.median(point_set[:,dim])[0][0]  
    left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut))
    right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut))
    middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut))

    if torch.numel(left_idx) < num_points:
        left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0)
    if torch.numel(right_idx) < num_points:
        right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0)

    left_ps = torch.index_select(point_set, dim = 0, index = left_idx)
    right_ps = torch.index_select(point_set, dim = 0, index = right_idx)
    return left_ps, right_ps, dim
项目:dawn-bench-models    作者:stanford-futuredata    | 项目源码 | 文件源码
def grad_sparsity(self):
    global_state = self._global_state
    if self._iter == 0:
      global_state["sparsity_avg"] = 0.0
    non_zero_cnt = 0.0
    all_entry_cnt = 0.0
    for group in self._optimizer.param_groups:
      for p in group['params']:
        if p.grad is None:
          continue
        grad = p.grad.data
        grad_non_zero = grad.nonzero()
        if grad_non_zero.dim() > 0:
          non_zero_cnt += grad_non_zero.size()[0]
        all_entry_cnt += torch.numel(grad)
    beta = self._beta
    global_state["sparsity_avg"] = beta * global_state["sparsity_avg"] \
      + (1 - beta) * non_zero_cnt / float(all_entry_cnt)
    self._sparsity_avg = \
      global_state["sparsity_avg"] / self.zero_debias_factor()
    return
项目:logger    作者:oval-group    | 项目源码 | 文件源码
def to_float(val):
    """ Check that val is one of the following:
    - pytorch autograd Variable with one element
    - pytorch tensor with one element
    - numpy array with one element
    - any type supporting float() operation
    And convert val to float
    """

    if isinstance(val, np.ndarray):
        assert val.size == 1, \
            "val should have one element (got {})".format(val.size)
        return float(val.squeeze()[0])

    if torch is not None:
        if isinstance(val, torch_autograd.Variable):
            val = val.data
        if torch.is_tensor(val):
            assert torch.numel(val) == 1, \
                "val should have one element (got {})".format(torch.numel(val))
            return float(val.squeeze()[0])

    try:
        return float(val)
    except:
        raise TypeError("Unsupported type for val ({})".format(type(val)))
项目:kdnet.pytorch    作者:fxia22    | 项目源码 | 文件源码
def split_ps_reuse(point_set, level, pos, tree, cutdim):
    sz = point_set.size()
    num_points = np.array(sz)[0]/2
    max_value = point_set.max(dim=0)[0]
    min_value = -(-point_set).max(dim=0)[0]

    diff = max_value - min_value
    dim = torch.max(diff, dim = 1)[1][0,0]

    cut = torch.median(point_set[:,dim])[0][0]
    left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut))
    right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut))
    middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut))

    if torch.numel(left_idx) < num_points:
        left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0)
    if torch.numel(right_idx) < num_points:
        right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0)

    left_ps = torch.index_select(point_set, dim = 0, index = left_idx)
    right_ps = torch.index_select(point_set, dim = 0, index = right_idx)

    tree[level+1][pos * 2] = left_ps
    tree[level+1][pos * 2 + 1] = right_ps
    cutdim[level][pos * 2] = dim
    cutdim[level][pos * 2 + 1] = dim

    return
项目:kdnet.pytorch    作者:fxia22    | 项目源码 | 文件源码
def split_ps_reuse(point_set, level, pos, tree, cutdim):
    sz = point_set.size()
    num_points = np.array(sz)[0]/2
    max_value = point_set.max(dim=0)[0]
    min_value = -(-point_set).max(dim=0)[0]

    diff = max_value - min_value
    dim = torch.max(diff, dim = 1)[1][0,0]

    cut = torch.median(point_set[:,dim])[0][0]
    left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut))
    right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut))
    middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut))

    if torch.numel(left_idx) < num_points:
        left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0)
    if torch.numel(right_idx) < num_points:
        right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0)

    left_ps = torch.index_select(point_set, dim = 0, index = left_idx)
    right_ps = torch.index_select(point_set, dim = 0, index = right_idx)

    tree[level+1][pos * 2] = left_ps
    tree[level+1][pos * 2 + 1] = right_ps
    cutdim[level][pos * 2] = dim
    cutdim[level][pos * 2 + 1] = dim

    return
项目:kdnet.pytorch    作者:fxia22    | 项目源码 | 文件源码
def split_ps_reuse(point_set, level, pos, tree, cutdim):
    sz = point_set.size()
    num_points = np.array(sz)[0]/2
    max_value = point_set.max(dim=0)[0]
    min_value = -(-point_set).max(dim=0)[0]

    diff = max_value - min_value
    diff = diff[:,:3]
    dim = torch.max(diff, dim = 1)[1][0,0]

    cut = torch.median(point_set[:,dim])[0][0]
    left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut))
    right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut))
    middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut))

    if torch.numel(left_idx) < num_points:
        left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0)
    if torch.numel(right_idx) < num_points:
        right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0)

    left_ps = torch.index_select(point_set, dim = 0, index = left_idx)
    right_ps = torch.index_select(point_set, dim = 0, index = right_idx)

    tree[level+1][pos * 2] = left_ps
    tree[level+1][pos * 2 + 1] = right_ps
    cutdim[level][pos * 2] = dim
    cutdim[level][pos * 2 + 1] = dim

    return
项目:kdnet.pytorch    作者:fxia22    | 项目源码 | 文件源码
def split_ps_reuse(point_set, level, pos, tree, cutdim):
    sz = point_set.size()
    num_points = np.array(sz)[0]/2
    max_value = point_set.max(dim=0)[0]
    min_value = -(-point_set).max(dim=0)[0]

    diff = max_value - min_value
    dim = torch.max(diff, dim = 1)[1][0,0]

    cut = torch.median(point_set[:,dim])[0][0]  
    left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut))
    right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut))
    middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut))

    if torch.numel(left_idx) < num_points:
        left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0)
    if torch.numel(right_idx) < num_points:
        right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0)

    left_ps = torch.index_select(point_set, dim = 0, index = left_idx)
    right_ps = torch.index_select(point_set, dim = 0, index = right_idx)

    tree[level+1][pos * 2] = left_ps
    tree[level+1][pos * 2 + 1] = right_ps
    cutdim[level][pos * 2] = dim
    cutdim[level][pos * 2 + 1] = dim

    return