Python torch 模块,mode() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用torch.mode()

项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def test_mode(self):
        x = torch.range(1, SIZE * SIZE).clone().resize_(SIZE, SIZE)
        x[:2] = 1
        x[:,:2] = 1
        x0 = x.clone()

        # Pre-calculated results.
        res1val = torch.Tensor(SIZE, 1).fill_(1)
        # The indices are the position of the last appearance of the mode element.
        res1ind = torch.LongTensor(SIZE, 1).fill_(1)
        res1ind[0] = SIZE-1
        res1ind[1] = SIZE-1

        res2val, res2ind = torch.mode(x)

        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test use of result tensor
        res2val = torch.Tensor()
        res2ind = torch.LongTensor()
        torch.mode(res2val, res2ind, x)
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test non-default dim
        res2val, res2ind = torch.mode(x, 0)
        self.assertEqual(res1val.view(1, SIZE), res2val, 0)
        self.assertEqual(res1ind.view(1, SIZE), res2ind, 0)

        # input unchanged
        self.assertEqual(x, x0, 0)
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def test_mode(self):
        x = torch.arange(1, SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
        x[:2] = 1
        x[:, :2] = 1
        x0 = x.clone()

        # Pre-calculated results.
        res1val = torch.Tensor(SIZE, 1).fill_(1)
        # The indices are the position of the last appearance of the mode element.
        res1ind = torch.LongTensor(SIZE, 1).fill_(1)
        res1ind[0] = SIZE - 1
        res1ind[1] = SIZE - 1

        res2val, res2ind = torch.mode(x)

        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test use of result tensor
        res2val = torch.Tensor()
        res2ind = torch.LongTensor()
        torch.mode(x, out=(res2val, res2ind))
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test non-default dim
        res2val, res2ind = torch.mode(x, 0)
        self.assertEqual(res1val.view(1, SIZE), res2val, 0)
        self.assertEqual(res1ind.view(1, SIZE), res2ind, 0)

        # input unchanged
        self.assertEqual(x, x0, 0)
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_dim_reduction(self):
        dim_red_fns = [
            "mean", "median", "mode", "norm", "prod",
            "std", "sum", "var", "max", "min"]

        def normfn_attr(t, dim, keepdim=True):
            attr = getattr(torch, "norm")
            return attr(t, 2, dim, keepdim)

        for fn_name in dim_red_fns:
            x = torch.randn(3, 4, 5)
            fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr

            def fn(t, dim, keepdim=True):
                ans = fn_attr(x, dim, keepdim)
                return ans if not isinstance(ans, tuple) else ans[0]

            dim = random.randint(0, 2)
            self.assertEqual(fn(x, dim, False).unsqueeze(dim), fn(x, dim))
            self.assertEqual(x.ndimension() - 1, fn(x, dim, False).ndimension())
            self.assertEqual(x.ndimension(), fn(x, dim, True).ndimension())

            # check 1-d behavior
            x = torch.randn(1)
            dim = 0
            self.assertEqual(fn(x, dim), fn(x, dim, True))
            self.assertEqual(x.ndimension(), fn(x, dim).ndimension())
            self.assertEqual(x.ndimension(), fn(x, dim, True).ndimension())
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def test_mode(self):
        x = torch.arange(1, SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
        x[:2] = 1
        x[:, :2] = 1
        x0 = x.clone()

        # Pre-calculated results.
        res1val = torch.Tensor(SIZE).fill_(1)
        # The indices are the position of the last appearance of the mode element.
        res1ind = torch.LongTensor(SIZE).fill_(1)
        res1ind[0] = SIZE - 1
        res1ind[1] = SIZE - 1

        res2val, res2ind = torch.mode(x, keepdim=False)
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test use of result tensor
        res2val = torch.Tensor()
        res2ind = torch.LongTensor()
        torch.mode(x, keepdim=False, out=(res2val, res2ind))
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test non-default dim
        res2val, res2ind = torch.mode(x, 0, False)
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # input unchanged
        self.assertEqual(x, x0, 0)
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def _test_dim_reduction(self, cast):
        dim_red_fns = [
            "mean", "median", "mode", "norm", "prod",
            "std", "sum", "var", "max", "min"]

        def normfn_attr(t, dim, keepdim=False):
            attr = getattr(torch, "norm")
            return attr(t, 2, dim, keepdim)

        for fn_name in dim_red_fns:
            fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr

            def fn(x, dim, keepdim=False):
                ans = fn_attr(x, dim, keepdim=keepdim)
                return ans if not isinstance(ans, tuple) else ans[0]

            def test_multidim(x, dim):
                self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
                self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
                self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())

            # general case
            x = cast(torch.randn(3, 4, 5))
            dim = random.randint(0, 2)
            test_multidim(x, dim)

            # check 1-d behavior
            x = cast(torch.randn(1))
            dim = 0
            self.assertEqual(fn(x, dim), fn(x, dim, keepdim=True))
            self.assertEqual(x.ndimension(), fn(x, dim).ndimension())
            self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())

            # check reducing of a singleton dimension
            dims = [3, 4, 5]
            singleton_dim = random.randint(0, 2)
            dims[singleton_dim] = 1
            x = cast(torch.randn(dims))
            test_multidim(x, singleton_dim)
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_mode(self):
        x = torch.arange(1, SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
        x[:2] = 1
        x[:, :2] = 1
        x0 = x.clone()

        # Pre-calculated results.
        res1val = torch.Tensor(SIZE).fill_(1)
        # The indices are the position of the last appearance of the mode element.
        res1ind = torch.LongTensor(SIZE).fill_(1)
        res1ind[0] = SIZE - 1
        res1ind[1] = SIZE - 1

        res2val, res2ind = torch.mode(x, keepdim=False)
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test use of result tensor
        res2val = torch.Tensor()
        res2ind = torch.LongTensor()
        torch.mode(x, keepdim=False, out=(res2val, res2ind))
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test non-default dim
        res2val, res2ind = torch.mode(x, 0, False)
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # input unchanged
        self.assertEqual(x, x0, 0)
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def _test_dim_reduction(self, cast):
        dim_red_fns = [
            "mean", "median", "mode", "norm", "prod",
            "std", "sum", "var", "max", "min"]

        def normfn_attr(t, dim, keepdim=False):
            attr = getattr(torch, "norm")
            return attr(t, 2, dim, keepdim)

        for fn_name in dim_red_fns:
            fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr

            def fn(x, dim, keepdim=False):
                ans = fn_attr(x, dim, keepdim=keepdim)
                return ans if not isinstance(ans, tuple) else ans[0]

            def test_multidim(x, dim):
                self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
                self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
                self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())

            # general case
            x = cast(torch.randn(3, 4, 5))
            dim = random.randint(0, 2)
            test_multidim(x, dim)

            # check 1-d behavior
            x = cast(torch.randn(1))
            dim = 0
            self.assertEqual(fn(x, dim), fn(x, dim, keepdim=True))
            self.assertEqual(x.ndimension(), fn(x, dim).ndimension())
            self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())

            # check reducing of a singleton dimension
            dims = [3, 4, 5]
            singleton_dim = random.randint(0, 2)
            dims[singleton_dim] = 1
            x = cast(torch.randn(dims))
            test_multidim(x, singleton_dim)
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def test_mode(self):
        x = torch.arange(1, SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
        x[:2] = 1
        x[:, :2] = 1
        x0 = x.clone()

        # Pre-calculated results.
        res1val = torch.Tensor(SIZE).fill_(1)
        # The indices are the position of the last appearance of the mode element.
        res1ind = torch.LongTensor(SIZE).fill_(1)
        res1ind[0] = SIZE - 1
        res1ind[1] = SIZE - 1

        res2val, res2ind = torch.mode(x, keepdim=False)
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test use of result tensor
        res2val = torch.Tensor()
        res2ind = torch.LongTensor()
        torch.mode(x, keepdim=False, out=(res2val, res2ind))
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # Test non-default dim
        res2val, res2ind = torch.mode(x, 0, False)
        self.assertEqual(res1val, res2val, 0)
        self.assertEqual(res1ind, res2ind, 0)

        # input unchanged
        self.assertEqual(x, x0, 0)
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def test_keepdim_warning(self):
        torch.utils.backcompat.keepdim_warning.enabled = True
        x = Variable(torch.randn(3, 4), requires_grad=True)

        def run_backward(y):
            y_ = y
            if type(y) is tuple:
                y_ = y[0]
            # check that backward runs smooth
            y_.backward(y_.data.new(y_.size()).normal_())

        def keepdim_check(f):
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                y = f(x, 1)
                self.assertTrue(len(w) == 1)
                self.assertTrue(issubclass(w[-1].category, UserWarning))
                self.assertTrue("keepdim" in str(w[-1].message))
                run_backward(y)
                self.assertEqual(x.size(), x.grad.size())

                # check against explicit keepdim
                y2 = f(x, 1, keepdim=False)
                self.assertEqual(y, y2)
                run_backward(y2)

                y3 = f(x, 1, keepdim=True)
                if type(y3) == tuple:
                    y3 = (y3[0].squeeze(1), y3[1].squeeze(1))
                else:
                    y3 = y3.squeeze(1)
                self.assertEqual(y, y3)
                run_backward(y3)

        keepdim_check(torch.sum)
        keepdim_check(torch.prod)
        keepdim_check(torch.mean)
        keepdim_check(torch.max)
        keepdim_check(torch.min)
        keepdim_check(torch.mode)
        keepdim_check(torch.median)
        keepdim_check(torch.kthvalue)
        keepdim_check(torch.var)
        keepdim_check(torch.std)
        torch.utils.backcompat.keepdim_warning.enabled = False