我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用torch._storage_classes()。
def test_print(self): for t in torch._tensor_classes: if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100, 100).fill_(1) obj.__repr__() str(obj) for t in torch._storage_classes: if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100).fill_(1) obj.__repr__() str(obj) x = torch.Tensor([4, float('inf'), 1.5, float('-inf'), 0, float('nan'), 1]) x.__repr__() str(x)
def test_print(self): for t in torch._tensor_classes: if t in torch.sparse._sparse_tensor_classes: continue if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100, 100).fill_(1) obj.__repr__() str(obj) for t in torch._storage_classes: if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100).fill_(1) obj.__repr__() str(obj) x = torch.Tensor([4, float('inf'), 1.5, float('-inf'), 0, float('nan'), 1]) x.__repr__() str(x)
def test_print(self): for t in torch._tensor_classes: if t == torch.HalfTensor: continue # HalfTensor does not support fill if t in torch.sparse._sparse_tensor_classes: continue if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100, 100).fill_(1) obj.__repr__() str(obj) for t in torch._storage_classes: if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100).fill_(1) obj.__repr__() str(obj) x = torch.Tensor([4, float('inf'), 1.5, float('-inf'), 0, float('nan'), 1]) x.__repr__() str(x)
def __init__(self, context=None, reducers=None): if context is None: context = multiprocessing if reducers is None: reducers = {} for t in torch._tensor_classes: reducers.setdefault(t, reduce_tensor) for t in torch._storage_classes: reducers.setdefault(t, reduce_storage) super(Queue, self).__init__(context, reducers)
def init_reductions(): ForkingPickler.register(torch.cuda.Event, reduce_event) for t in torch._storage_classes: ForkingPickler.register(t, reduce_storage) for t in torch._tensor_classes: ForkingPickler.register(t, reduce_tensor)
def test_print(self): for t in torch._tensor_classes: if IS_WINDOWS and t in [torch.cuda.sparse.HalfTensor, torch.cuda.HalfTensor]: return # CUDA HalfTensor is not supported on Windows yet if t == torch.HalfTensor: continue # HalfTensor does not support fill if t in torch.sparse._sparse_tensor_classes: continue if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100, 100).fill_(1) obj.__repr__() str(obj) for t in torch._storage_classes: if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100).fill_(1) obj.__repr__() str(obj) x = torch.Tensor([4, float('inf'), 1.5, float('-inf'), 0, float('nan'), 1]) x.__repr__() str(x) x = torch.DoubleTensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309]) x.__repr__() str(x),