Python torchvision.transforms 模块,Resize() 实例源码

我们从Python开源项目中,提取了以下4个代码示例,用于说明如何使用torchvision.transforms.Resize()

项目:mean-teacher    作者:CuriousAI    | 项目源码 | 文件源码
def imagenet():
    channel_stats = dict(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
    train_transformation = data.TransformTwice(transforms.Compose([
        transforms.RandomRotation(10),
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
        transforms.ToTensor(),
        transforms.Normalize(**channel_stats)
    ]))
    eval_transformation = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(**channel_stats)
    ])

    return {
        'train_transformation': train_transformation,
        'eval_transformation': eval_transformation,
        'datadir': 'data-local/images/ilsvrc2012/',
        'num_classes': 1000
    }
项目:generative_models    作者:j-min    | 项目源码 | 文件源码
def get_transform(resize_crop='resize_and_crop', flip=True,
                  loadSize=286, fineSize=256):
    transform_list = []
    if resize_crop == 'resize_and_crop':
        osize = [loadSize, loadSize]
        transform_list.append(transforms.Resize(osize, Image.BICUBIC))
        transform_list.append(transforms.RandomCrop(fineSize))
    elif resize_crop == 'crop':
        transform_list.append(transforms.RandomCrop(fineSize))
    elif resize_crop == 'scale_width':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, fineSize)))
    elif resize_crop == 'scale_width_and_crop':
        transform_list.append(transforms.Lambda(
            lambda img: __scale_width(img, loadSize)))
        transform_list.append(transforms.RandomCrop(fineSize))

    if flip:
        transform_list.append(transforms.RandomHorizontalFlip())

    transform_list += [transforms.ToTensor(),
                       transforms.Normalize((0.5, 0.5, 0.5),
                                            (0.5, 0.5, 0.5))]
    return transforms.Compose(transform_list)
项目:ShuffleNet    作者:jaxony    | 项目源码 | 文件源码
def get_transformer():
  normalize = transforms.Normalize(
      mean=[0.485, 0.456, 0.406],
      std=[0.229, 0.224, 0.225])

  transformer = transforms.Compose([
      transforms.Resize(128),
      transforms.ToTensor(),
      normalize
  ])
  return transformer
项目:PyTorch-Encoding    作者:zhanghang1989    | 项目源码 | 文件源码
def __init__(self, args):
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
        transform_train = transforms.Compose([
            transforms.Resize(256),
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ColorJitter(0.4,0.4,0.4),
            transforms.ToTensor(),
            Lighting(0.1, _imagenet_pca['eigval'], _imagenet_pca['eigvec']),
            normalize,
        ])
        transform_test = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ])

        trainset = MINCDataloder(root=os.path.expanduser('~/data/minc-2500/'), 
            train=True, transform=transform_train)
        testset = MINCDataloder(root=os.path.expanduser('~/data/minc-2500/'), 
            train=False, transform=transform_test)

        kwargs = {'num_workers': 8, 'pin_memory': True} if args.cuda else {}
        trainloader = torch.utils.data.DataLoader(trainset, batch_size=
            args.batch_size, shuffle=True, **kwargs)
        testloader = torch.utils.data.DataLoader(testset, batch_size=
            args.test_batch_size, shuffle=False, **kwargs)
        self.trainloader = trainloader 
        self.testloader = testloader