我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tornado.ioloop.IOLoop.add_future()。
def coroutine(func, replace_callback=True): """Decorator for asynchronous generators. Any generator that yields objects from this module must be wrapped in either this decorator or `engine`. Coroutines may "return" by raising the special exception `Return(value) <Return>`. In Python 3.3+, it is also possible for the function to simply use the ``return value`` statement (prior to Python 3.3 generators were not allowed to also return values). In all versions of Python a coroutine that simply wishes to exit early may use the ``return`` statement without a value. Functions with this decorator return a `.Future`. Additionally, they may be called with a ``callback`` keyword argument, which will be invoked with the future's result when it resolves. If the coroutine fails, the callback will not be run and an exception will be raised into the surrounding `.StackContext`. The ``callback`` argument is not visible inside the decorated function; it is handled by the decorator itself. From the caller's perspective, ``@gen.coroutine`` is similar to the combination of ``@return_future`` and ``@gen.engine``. .. warning:: When exceptions occur inside a coroutine, the exception information will be stored in the `.Future` object. You must examine the result of the `.Future` object, or the exception may go unnoticed by your code. This means yielding the function if called from another coroutine, using something like `.IOLoop.run_sync` for top-level calls, or passing the `.Future` to `.IOLoop.add_future`. """ return _make_coroutine_wrapper(func, replace_callback=True)
def start(self, runner): if not self.future.done(): self.runner = runner self.key = object() runner.register_callback(self.key) self.io_loop.add_future(self.future, runner.result_callback(self.key)) else: self.runner = None self.result_fn = self.future.result
def with_timeout(timeout, future, io_loop=None, quiet_exceptions=()): """Wraps a `.Future` in a timeout. Raises `TimeoutError` if the input future does not complete before ``timeout``, which may be specified in any form allowed by `.IOLoop.add_timeout` (i.e. a `datetime.timedelta` or an absolute time relative to `.IOLoop.time`) If the wrapped `.Future` fails after it has timed out, the exception will be logged unless it is of a type contained in ``quiet_exceptions`` (which may be an exception type or a sequence of types). Currently only supports Futures, not other `YieldPoint` classes. .. versionadded:: 4.0 .. versionchanged:: 4.1 Added the ``quiet_exceptions`` argument and the logging of unhandled exceptions. """ # TODO: allow yield points in addition to futures? # Tricky to do with stack_context semantics. # # It's tempting to optimize this by cancelling the input future on timeout # instead of creating a new one, but A) we can't know if we are the only # one waiting on the input future, so cancelling it might disrupt other # callers and B) concurrent futures can only be cancelled while they are # in the queue, so cancellation cannot reliably bound our waiting time. result = Future() chain_future(future, result) if io_loop is None: io_loop = IOLoop.current() def error_callback(future): try: future.result() except Exception as e: if not isinstance(e, quiet_exceptions): app_log.error("Exception in Future %r after timeout", future, exc_info=True) def timeout_callback(): result.set_exception(TimeoutError("Timeout")) # In case the wrapped future goes on to fail, log it. future.add_done_callback(error_callback) timeout_handle = io_loop.add_timeout( timeout, timeout_callback) if isinstance(future, Future): # We know this future will resolve on the IOLoop, so we don't # need the extra thread-safety of IOLoop.add_future (and we also # don't care about StackContext here. future.add_done_callback( lambda future: io_loop.remove_timeout(timeout_handle)) else: # concurrent.futures.Futures may resolve on any thread, so we # need to route them back to the IOLoop. io_loop.add_future( future, lambda future: io_loop.remove_timeout(timeout_handle)) return result
def handle_yield(self, yielded): # Lists containing YieldPoints require stack contexts; # other lists are handled in convert_yielded. if _contains_yieldpoint(yielded): yielded = multi(yielded) if isinstance(yielded, YieldPoint): # YieldPoints are too closely coupled to the Runner to go # through the generic convert_yielded mechanism. self.future = TracebackFuture() def start_yield_point(): try: yielded.start(self) if yielded.is_ready(): self.future.set_result( yielded.get_result()) else: self.yield_point = yielded except Exception: self.future = TracebackFuture() self.future.set_exc_info(sys.exc_info()) if self.stack_context_deactivate is None: # Start a stack context if this is the first # YieldPoint we've seen. with stack_context.ExceptionStackContext( self.handle_exception) as deactivate: self.stack_context_deactivate = deactivate def cb(): start_yield_point() self.run() self.io_loop.add_callback(cb) return False else: start_yield_point() else: try: self.future = convert_yielded(yielded) except BadYieldError: self.future = TracebackFuture() self.future.set_exc_info(sys.exc_info()) if not self.future.done() or self.future is moment: self.io_loop.add_future( self.future, lambda f: self.run()) return False return True
def _make_coroutine_wrapper(func, replace_callback): """The inner workings of ``@gen.coroutine`` and ``@gen.engine``. The two decorators differ in their treatment of the ``callback`` argument, so we cannot simply implement ``@engine`` in terms of ``@coroutine``. """ @functools.wraps(func) def wrapper(*args, **kwargs): future = TracebackFuture() if replace_callback and 'callback' in kwargs: callback = kwargs.pop('callback') IOLoop.current().add_future( future, lambda future: callback(future.result())) try: result = func(*args, **kwargs) except (Return, StopIteration) as e: result = getattr(e, 'value', None) except Exception: future.set_exc_info(sys.exc_info()) return future else: if isinstance(result, types.GeneratorType): # Inline the first iteration of Runner.run. This lets us # avoid the cost of creating a Runner when the coroutine # never actually yields, which in turn allows us to # use "optional" coroutines in critical path code without # performance penalty for the synchronous case. try: orig_stack_contexts = stack_context._state.contexts yielded = next(result) if stack_context._state.contexts is not orig_stack_contexts: yielded = TracebackFuture() yielded.set_exception( stack_context.StackContextInconsistentError( 'stack_context inconsistency (probably caused ' 'by yield within a "with StackContext" block)')) except (StopIteration, Return) as e: future.set_result(getattr(e, 'value', None)) except Exception: future.set_exc_info(sys.exc_info()) else: Runner(result, future, yielded) try: return future finally: # Subtle memory optimization: if next() raised an exception, # the future's exc_info contains a traceback which # includes this stack frame. This creates a cycle, # which will be collected at the next full GC but has # been shown to greatly increase memory usage of # benchmarks (relative to the refcount-based scheme # used in the absence of cycles). We can avoid the # cycle by clearing the local variable after we return it. future = None future.set_result(result) return future return wrapper
def handle_yield(self, yielded): # Lists containing YieldPoints require stack contexts; # other lists are handled via multi_future in convert_yielded. if (isinstance(yielded, list) and any(isinstance(f, YieldPoint) for f in yielded)): yielded = Multi(yielded) elif (isinstance(yielded, dict) and any(isinstance(f, YieldPoint) for f in yielded.values())): yielded = Multi(yielded) if isinstance(yielded, YieldPoint): # YieldPoints are too closely coupled to the Runner to go # through the generic convert_yielded mechanism. self.future = TracebackFuture() def start_yield_point(): try: yielded.start(self) if yielded.is_ready(): self.future.set_result( yielded.get_result()) else: self.yield_point = yielded except Exception: self.future = TracebackFuture() self.future.set_exc_info(sys.exc_info()) if self.stack_context_deactivate is None: # Start a stack context if this is the first # YieldPoint we've seen. with stack_context.ExceptionStackContext( self.handle_exception) as deactivate: self.stack_context_deactivate = deactivate def cb(): start_yield_point() self.run() self.io_loop.add_callback(cb) return False else: start_yield_point() else: try: self.future = convert_yielded(yielded) except BadYieldError: self.future = TracebackFuture() self.future.set_exc_info(sys.exc_info()) if not self.future.done() or self.future is moment: self.io_loop.add_future( self.future, lambda f: self.run()) return False return True
def coroutine(func, replace_callback=True): """Decorator for asynchronous generators. Any generator that yields objects from this module must be wrapped in either this decorator or `engine`. Coroutines may "return" by raising the special exception `Return(value) <Return>`. In Python 3.3+, it is also possible for the function to simply use the ``return value`` statement (prior to Python 3.3 generators were not allowed to also return values). In all versions of Python a coroutine that simply wishes to exit early may use the ``return`` statement without a value. Functions with this decorator return a `.Future`. Additionally, they may be called with a ``callback`` keyword argument, which will be invoked with the future's result when it resolves. If the coroutine fails, the callback will not be run and an exception will be raised into the surrounding `.StackContext`. The ``callback`` argument is not visible inside the decorated function; it is handled by the decorator itself. From the caller's perspective, ``@gen.coroutine`` is similar to the combination of ``@return_future`` and ``@gen.engine``. .. warning:: When exceptions occur inside a coroutine, the exception information will be stored in the `.Future` object. You must examine the result of the `.Future` object, or the exception may go unnoticed by your code. This means yielding the function if called from another coroutine, using something like `.IOLoop.run_sync` for top-level calls, or passing the `.Future` to `.IOLoop.add_future`. """ return _make_coroutine_wrapper(func, replace_callback=True) # Ties lifetime of runners to their result futures. Github Issue #1769 # Generators, like any object in Python, must be strong referenced # in order to not be cleaned up by the garbage collector. When using # coroutines, the Runner object is what strong-refs the inner # generator. However, the only item that strong-reffed the Runner # was the last Future that the inner generator yielded (via the # Future's internal done_callback list). Usually this is enough, but # it is also possible for this Future to not have any strong references # other than other objects referenced by the Runner object (usually # when using other callback patterns and/or weakrefs). In this # situation, if a garbage collection ran, a cycle would be detected and # Runner objects could be destroyed along with their inner generators # and everything in their local scope. # This map provides strong references to Runner objects as long as # their result future objects also have strong references (typically # from the parent coroutine's Runner). This keeps the coroutine's # Runner alive.