Python types 模块,LambdaType() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用types.LambdaType()

项目:code    作者:ActiveState    | 项目源码 | 文件源码
def new_looper(a, arg=None):
    """Helper function for nest()
    determines what sort of looper to make given a's type"""
    if isinstance(a,types.TupleType):
        if len(a) == 2:
            return RangeLooper(a[0],a[1])
        elif len(a) == 3:
            return RangeLooper(a[0],a[1],a[2])
    elif isinstance(a, types.BooleanType):
        return BooleanLooper(a)
    elif isinstance(a,types.IntType) or isinstance(a, types.LongType):
        return RangeLooper(a)
    elif isinstance(a, types.StringType) or isinstance(a, types.ListType):
        return ListLooper(a)
    elif isinstance(a, Looper):
        return a
    elif isinstance(a, types.LambdaType):
        return CalcField(a, arg)
项目:hostapd-mana    作者:adde88    | 项目源码 | 文件源码
def getSubcontroller(self, request, node, model, controllerName):
        controller = None
        cm = getattr(self, 'wcfactory_' +
                                    controllerName, None)
        if cm is None:
            cm = getattr(self, 'factory_' +
                                         controllerName, None)
            if cm is not None:
                warnings.warn("factory_ methods are deprecated; please use "
                              "wcfactory_ instead", DeprecationWarning)
        if cm:
            if cm.func_code.co_argcount == 1 and not type(cm) == types.LambdaType:
                warnings.warn("A Controller Factory takes "
                              "(request, node, model) "
                              "now instead of (model)", DeprecationWarning)
                controller = controllerFactory(model)
            else:
                controller = cm(request, node, model)
        return controller
项目:kafka-spark-influx-csv-analysis    作者:bwsw    | 项目源码 | 文件源码
def test_build_lambda_for_reduce(self):
        test_input_rule = "Min(packet_size);Max(sampling_rate); Sum(traffic)"
        input_data_structure = StructType([StructField("sampling_rate", LongType()),
                                           StructField("packet_size", LongType()),
                                           StructField("traffic", LongType())])
        test_input_operation = "reduce"
        config = TestConfig({"processing": {"aggregations": {"operation_type": test_input_operation,
                                                             "rule": test_input_rule}}})
        test_aggregation_processor = AggregationProcessor(config, input_data_structure)

        spark = SparkSession.builder.getOrCreate()
        sc = spark.sparkContext
        test_rdd = sc.parallelize([(4, 2, 1), (7, 1, 1), (1, 0, 1), (2, 5, 1), (1, 1, 1)])
        test_aggregation_lambda = test_aggregation_processor.get_aggregation_lambda()

        self.assertIsInstance(test_aggregation_lambda, types.LambdaType, "get_aggregation_lambda should return "
                                                                         "lambda function")

        test_result = test_aggregation_lambda(test_rdd)
        self.assertTupleEqual(test_result, (7, 0, 5), "Error in aggregation operation. Tuple should be equal")
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def get_config(self):
        if isinstance(self.function, python_types.LambdaType):
            function = func_dump(self.function)
            function_type = 'lambda'
        else:
            function = self.function.__name__
            function_type = 'function'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        config = {'function': function,
                  'function_type': function_type,
                  'output_shape': output_shape,
                  'output_shape_type': output_shape_type,
                  'arguments': self.arguments}
        base_config = super(Lambda, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
项目:touch-pay-client    作者:HackPucBemobi    | 项目源码 | 文件源码
def obj2dict(obj, processed=None):
    """                                                                        
    converts any object into a dict, recursively                               
    """
    processed = processed if not processed is None else set()
    if obj is None:
        return None
    if isinstance(obj,(int,long,str,unicode,float,bool)):
        return obj
    if id(obj) in processed:
        return '<reference>'
    processed.add(id(obj))
    if isinstance(obj,(list,tuple)):
        return [obj2dict(item,processed) for item in obj]
    if not isinstance(obj, dict) and hasattr(obj,'__dict__'):
        obj = obj.__dict__
    else:
        return repr(obj)
    return dict((key,obj2dict(value,processed)) for key,value in obj.items()
                if not key.startswith('_') and
                not type(value) in (types.FunctionType,
                                    types.LambdaType,
                                    types.BuiltinFunctionType,
                                    types.BuiltinMethodType))
项目:touch-pay-client    作者:HackPucBemobi    | 项目源码 | 文件源码
def _compute_fields_for_operation(self, fields, to_compute):
        row = OpRow(self)
        for name, tup in iteritems(fields):
            field, value = tup
            if isinstance(
                value, (
                    types.LambdaType, types.FunctionType, types.MethodType,
                    types.BuiltinFunctionType, types.BuiltinMethodType
                )
            ):
                value = value()
            row.set_value(name, value, field)
        for name, field in to_compute:
            try:
                row.set_value(name, field.compute(row), field)
            except (KeyError, AttributeError):
                # error silently unless field is required!
                if field.required and name not in fields:
                    raise RuntimeError(
                        'unable to compute required field: %s' % name)
        return row
项目:true_review_web2py    作者:lucadealfaro    | 项目源码 | 文件源码
def obj2dict(obj, processed=None):
    """                                                                        
    converts any object into a dict, recursively                               
    """
    processed = processed if not processed is None else set()
    if obj is None:
        return None
    if isinstance(obj,(int,long,str,unicode,float,bool)):
        return obj
    if id(obj) in processed:
        return '<reference>'
    processed.add(id(obj))
    if isinstance(obj,(list,tuple)):
        return [obj2dict(item,processed) for item in obj]
    if not isinstance(obj, dict) and hasattr(obj,'__dict__'):
        obj = obj.__dict__
    else:
        return repr(obj)
    return dict((key,obj2dict(value,processed)) for key,value in obj.items()
                if not key.startswith('_') and
                not type(value) in (types.FunctionType,
                                    types.LambdaType,
                                    types.BuiltinFunctionType,
                                    types.BuiltinMethodType))
项目:spc    作者:whbrewer    | 项目源码 | 文件源码
def obj2dict(obj, processed=None):
    """                                                                        
    converts any object into a dict, recursively                               
    """
    processed = processed if not processed is None else set()
    if obj is None:
        return None
    if isinstance(obj,(int,long,str,unicode,float,bool)):
        return obj
    if id(obj) in processed:
        return '<reference>'
    processed.add(id(obj))
    if isinstance(obj,(list,tuple)):
        return [obj2dict(item,processed) for item in obj]
    if not isinstance(obj, dict) and hasattr(obj,'__dict__'):
        obj = obj.__dict__
    else:
        return repr(obj)
    return dict((key,obj2dict(value,processed)) for key,value in obj.items()
                if not key.startswith('_') and
                not type(value) in (types.FunctionType,
                                    types.LambdaType,
                                    types.BuiltinFunctionType,
                                    types.BuiltinMethodType))
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def get_config(self):
        if isinstance(self.function, python_types.LambdaType):
            function = func_dump(self.function)
            function_type = 'lambda'
        else:
            function = self.function.__name__
            function_type = 'function'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        config = {'function': function,
                  'function_type': function_type,
                  'output_shape': output_shape,
                  'output_shape_type': output_shape_type,
                  'arguments': self.arguments}
        base_config = super(Lambda, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
项目:Problematica-public    作者:TechMaz    | 项目源码 | 文件源码
def obj2dict(obj, processed=None):
    """                                                                        
    converts any object into a dict, recursively                               
    """
    processed = processed if not processed is None else set()
    if obj is None:
        return None
    if isinstance(obj,(int,long,str,unicode,float,bool)):
        return obj
    if id(obj) in processed:
        return '<reference>'
    processed.add(id(obj))
    if isinstance(obj,(list,tuple)):
        return [obj2dict(item,processed) for item in obj]
    if not isinstance(obj, dict) and hasattr(obj,'__dict__'):
        obj = obj.__dict__
    else:
        return repr(obj)
    return dict((key,obj2dict(value,processed)) for key,value in obj.items()
                if not key.startswith('_') and
                not type(value) in (types.FunctionType,
                                    types.LambdaType,
                                    types.BuiltinFunctionType,
                                    types.BuiltinMethodType))
项目:sslstrip-hsts-openwrt    作者:adde88    | 项目源码 | 文件源码
def getSubcontroller(self, request, node, model, controllerName):
        controller = None
        cm = getattr(self, 'wcfactory_' +
                                    controllerName, None)
        if cm is None:
            cm = getattr(self, 'factory_' +
                                         controllerName, None)
            if cm is not None:
                warnings.warn("factory_ methods are deprecated; please use "
                              "wcfactory_ instead", DeprecationWarning)
        if cm:
            if cm.func_code.co_argcount == 1 and not type(cm) == types.LambdaType:
                warnings.warn("A Controller Factory takes "
                              "(request, node, model) "
                              "now instead of (model)", DeprecationWarning)
                controller = controllerFactory(model)
            else:
                controller = cm(request, node, model)
        return controller
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def get_config(self):
        if isinstance(self.function, python_types.LambdaType):
            function = func_dump(self.function)
            function_type = 'lambda'
        else:
            function = self.function.__name__
            function_type = 'function'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        config = {'function': function,
                  'function_type': function_type,
                  'output_shape': output_shape,
                  'output_shape_type': output_shape_type,
                  'arguments': self.arguments}
        base_config = super(Lambda, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
项目:rekall-agent-server    作者:rekall-innovations    | 项目源码 | 文件源码
def obj2dict(obj, processed=None):
    """                                                                        
    converts any object into a dict, recursively                               
    """
    processed = processed if not processed is None else set()
    if obj is None:
        return None
    if isinstance(obj,(int,long,str,unicode,float,bool)):
        return obj
    if id(obj) in processed:
        return '<reference>'
    processed.add(id(obj))
    if isinstance(obj,(list,tuple)):
        return [obj2dict(item,processed) for item in obj]
    if not isinstance(obj, dict) and hasattr(obj,'__dict__'):
        obj = obj.__dict__
    else:
        return repr(obj)
    return dict((key,obj2dict(value,processed)) for key,value in obj.items()
                if not key.startswith('_') and
                not type(value) in (types.FunctionType,
                                    types.LambdaType,
                                    types.BuiltinFunctionType,
                                    types.BuiltinMethodType))
项目:rekall-agent-server    作者:rekall-innovations    | 项目源码 | 文件源码
def _compute_fields_for_operation(self, fields, to_compute):
        row = OpRow(self)
        for name, tup in iteritems(fields):
            field, value = tup
            if isinstance(
                value, (
                    types.LambdaType, types.FunctionType, types.MethodType,
                    types.BuiltinFunctionType, types.BuiltinMethodType
                )
            ):
                value = value()
            row.set_value(name, value, field)
        for name, field in to_compute:
            try:
                row.set_value(name, field.compute(row), field)
            except (KeyError, AttributeError):
                # error silently unless field is required!
                if field.required and name not in fields:
                    raise RuntimeError(
                        'unable to compute required field: %s' % name)
        return row
项目:slugiot-client    作者:slugiot    | 项目源码 | 文件源码
def obj2dict(obj, processed=None):
    """                                                                        
    converts any object into a dict, recursively                               
    """
    processed = processed if not processed is None else set()
    if obj is None:
        return None
    if isinstance(obj,(int,long,str,unicode,float,bool)):
        return obj
    if id(obj) in processed:
        return '<reference>'
    processed.add(id(obj))
    if isinstance(obj,(list,tuple)):
        return [obj2dict(item,processed) for item in obj]
    if not isinstance(obj, dict) and hasattr(obj,'__dict__'):
        obj = obj.__dict__
    else:
        return repr(obj)
    return dict((key,obj2dict(value,processed)) for key,value in obj.items()
                if not key.startswith('_') and
                not type(value) in (types.FunctionType,
                                    types.LambdaType,
                                    types.BuiltinFunctionType,
                                    types.BuiltinMethodType))
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def get_config(self):
        if isinstance(self.function, python_types.LambdaType):
            function = func_dump(self.function)
            function_type = 'lambda'
        else:
            function = self.function.__name__
            function_type = 'function'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        config = {'function': function,
                  'function_type': function_type,
                  'output_shape': output_shape,
                  'output_shape_type': output_shape_type,
                  'arguments': self.arguments}
        base_config = super(Lambda, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
项目:keras_superpixel_pooling    作者:parag2489    | 项目源码 | 文件源码
def get_config(self):
        if isinstance(self.function, python_types.LambdaType):
            function = func_dump(self.function)
            function_type = 'lambda'
        else:
            function = self.function.__name__
            function_type = 'function'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        config = {'function': function,
                  'function_type': function_type,
                  'output_shape': output_shape,
                  'output_shape_type': output_shape_type,
                  'arguments': self.arguments}
        base_config = super(Lambda, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
项目:StuffShare    作者:StuffShare    | 项目源码 | 文件源码
def obj2dict(obj, processed=None):
    """                                                                        
    converts any object into a dict, recursively                               
    """
    processed = processed if not processed is None else set()
    if obj is None:
        return None
    if isinstance(obj,(int,long,str,unicode,float,bool)):
        return obj
    if id(obj) in processed:
        return '<reference>'
    processed.add(id(obj))
    if isinstance(obj,(list,tuple)):
        return [obj2dict(item,processed) for item in obj]
    if not isinstance(obj, dict) and hasattr(obj,'__dict__'):
        obj = obj.__dict__
    else:
        return repr(obj)
    return dict((key,obj2dict(value,processed)) for key,value in obj.items()
                if not key.startswith('_') and
                not type(value) in (types.FunctionType,
                                    types.LambdaType,
                                    types.BuiltinFunctionType,
                                    types.BuiltinMethodType))
项目:speccer    作者:bensimner    | 项目源码 | 文件源码
def _get_name_from_func(func, other):
    if not isinstance(func, types.LambdaType):
        with contextlib.suppress(AttributeError):
            return func.__qualname__

        with contextlib.suppress(AttributeError):
            return func.__name__

    return other
项目:code    作者:ActiveState    | 项目源码 | 文件源码
def __setstate__(self, state):
        "Sets the state of the _View instance when unpickled."
        database, query, name_changes = state
        self.__database = database
        self.__query = types.LambdaType(query, sys.modules, '', (), ())
        self.__name_changes = name_changes

    ########################################################################
项目:hostapd-mana    作者:adde88    | 项目源码 | 文件源码
def getSubview(self, request, node, model, viewName):
        """Get a sub-view from me.

        @returns: L{widgets.Widget}
        """
        view = None
        vm = getattr(self, 'wvfactory_' + viewName, None)
        if vm is None:
            vm = getattr(self, 'factory_' + viewName, None)
            if vm is not None:
                warnings.warn("factory_ methods are deprecated; please use "
                              "wvfactory_ instead", DeprecationWarning)
        if vm:
            if vm.func_code.co_argcount == 3 and not type(vm) == types.LambdaType:
                 warnings.warn("wvfactory_ methods take (request, node, "
                               "model) instead of (request, node) now. \n"
                               "Please instantiate your widgets with a "
                               "reference to model instead of self.model",
                               DeprecationWarning)
                 self.model = model
                 view = vm(request, node)
                 self.model = self.mainModel
            else:
                view = vm(request, node, model)

        setupMethod = getattr(self, 'wvupdate_' + viewName, None)
        if setupMethod:
            if view is None:
                view = widgets.Widget(model)
            view.setupMethods.append(setupMethod)
        return view
项目:ssd.pytorch    作者:amdegroot    | 项目源码 | 文件源码
def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd
项目:kafka-spark-influx-csv-analysis    作者:bwsw    | 项目源码 | 文件源码
def test_build_lambda(self):
        mult_syntax_tree = SyntaxTree()
        mult_syntax_tree.operation = "mult"
        mult_syntax_tree.children = ["packet_size", "sampling_rate"]

        parsed_transformations = ["src_ip", FieldTransformation("destination_ip", "dst_ip"),
                                  FieldTransformation("traffic", mult_syntax_tree)]

        creator = TransformationCreator(self.data_structure, parsed_transformations, TransformationOperations({
            "country": "./GeoLite2-Country.mmdb",
            "city": "./GeoLite2-City.mmdb",
            "asn": "./GeoLite2-ASN.mmdb"
        }))

        transformation = creator.build_lambda()

        self.assertIsInstance(transformation, types.LambdaType, "Transformation type should be lambda")

        spark = SparkSession.builder.getOrCreate()
        file = spark.read.csv(DATA_PATH, self.data_structure_pyspark)

        result = file.rdd.map(transformation)

        result = result.collect()

        self.assertListEqual(result, [("217.69.143.60", "91.221.61.183", 37888),
                                      ("91.221.61.168", "90.188.114.141", 34816),
                                      ("91.226.13.80", "5.136.78.36", 773120),
                                      ("192.168.30.2", "192.168.30.1", 94720),
                                      ("192.168.30.2", "192.168.30.1", 94720)], "List of tuples should be equal")

        spark.stop()
项目:kafka-spark-influx-csv-analysis    作者:bwsw    | 项目源码 | 文件源码
def test_build_lambda_with_nested_operations(self):
        mult_syntax_tree = SyntaxTree()
        mult_syntax_tree.operation = "mult"
        mult_syntax_tree.children = ["packet_size", "sampling_rate"]

        root_mult_st = SyntaxTree()
        root_mult_st.operation = "mult"
        root_mult_st.children = [mult_syntax_tree, "10"]

        parsed_transformations = ["src_ip", FieldTransformation("destination_ip", "dst_ip"),
                                  FieldTransformation("traffic", root_mult_st)]

        creator = TransformationCreator(self.data_structure, parsed_transformations, TransformationOperations({
            "country": "./GeoLite2-Country.mmdb",
            "city": "./GeoLite2-City.mmdb",
            "asn": "./GeoLite2-ASN.mmdb"
        }))

        transformation = creator.build_lambda()

        self.assertIsInstance(transformation, types.LambdaType, "Transformation type should be lambda")

        spark = SparkSession.builder.getOrCreate()
        file = spark.read.csv(DATA_PATH, self.data_structure_pyspark)

        result = file.rdd.map(transformation)

        result = result.collect()

        self.assertListEqual(result, [("217.69.143.60", "91.221.61.183", 378880),
                                      ("91.221.61.168", "90.188.114.141", 348160),
                                      ("91.226.13.80", "5.136.78.36", 7731200),
                                      ("192.168.30.2", "192.168.30.1", 947200),
                                      ("192.168.30.2", "192.168.30.1", 947200)],
                             "List of tuples should be equal")

        spark.stop()
项目:kafka-spark-influx-csv-analysis    作者:bwsw    | 项目源码 | 文件源码
def test__init__(self):
        config = Config(CONFIG_PATH)
        p = Processor(config)
        self.assertIsInstance(p.transformation, types.LambdaType, "Processor#transformation should be a lambda object")
项目:kafka-spark-influx-csv-analysis    作者:bwsw    | 项目源码 | 文件源码
def test_get_analysis_lambda_for_reduce(self, mock_analysis_record):
        # set up input data structure obtained after transformation and aggregation
        input_data_structure = {'rule': [{'key': False, 'func_name': 'Max', 'input_field': 'traffic'},
                                         {'key': False, 'func_name': 'Max', 'input_field': 'ip_size'},
                                         {'key': False, 'func_name': 'Sum', 'input_field': 'ip_size_sum'}],
                                'operation_type': 'reduceByKey'}
        # set up structure of config
        config = TestConfig(
            {
                "historical": {
                    "method": "influx",
                    "influx_options": {
                        "measurement": "mock"
                    }
                },
                "alert": {
                    "method": "stdout",
                    "option": {}
                },
                "time_delta": 20,
                "accuracy": 3,
                "rule": {
                    "ip_size": 5,
                    "ip_size_sum": 10,
                    "traffic": 15
                }

            })

        detection = Analysis(config.content, Mock(), Mock(),
                             input_data_structure)
        lambda_analysis = detection.get_analysis_lambda()
        self.assertIsInstance(lambda_analysis, types.LambdaType,
                              "Failed. get_analysis_lambda should return a lambda object")

        lambda_analysis((3, 4, 5, 4))
        self.assertTrue(mock_analysis_record.called,
                        "Failed. The analysis_record didn't call in lambda that returned by get_analysis_lambda.")
项目:kafka-spark-influx-csv-analysis    作者:bwsw    | 项目源码 | 文件源码
def test_get_analysis_lambda_and_analysis_lambda_reduce(self, mock_data_delivery, mock_alert_factory,
                                                            mock_historical_data):
        input_data_structure = {'rule': [{'key': False, 'func_name': 'Max', 'input_field': 'traffic'},
                                         {'key': False, 'func_name': 'Max', 'input_field': 'ip_size'},
                                         {'key': False, 'func_name': 'Sum', 'input_field': 'ip_size_sum'}],
                                'operation_type': 'reduceByKey'}
        enumerate_output_aggregation_field = {"traffic": 0, "ip_size": 1, "ip_size_sum": 2}

        mock_class = MagicMock()
        mock_analysis = MagicMock()
        mock_class.MockAnalysis.return_value = mock_analysis
        mock_analysis.analysis = MagicMock()
        sys.modules['analysis.MockAnalysis'] = mock_class
        mock_history_data_singleton = MagicMock()
        mock_data_delivery.return_value = mock_history_data_singleton
        obj_mock_alert_factory = MagicMock()
        mock_alert_factory.return_value = obj_mock_alert_factory
        obj_mock_historical_data = MagicMock()
        mock_historical_data.return_value = obj_mock_historical_data

        analysis_factory = AnalysisFactory(self._config, input_data_structure, enumerate_output_aggregation_field)

        test_lambda = analysis_factory.get_analysis_lambda()

        self.assertIsInstance(test_lambda, types.LambdaType, "get_analysis_lambda should return lambda function")

        test_lambda((6666, 7777, 8888))

        mock_analysis.analysis.assert_called_with(obj_mock_historical_data, obj_mock_alert_factory)
项目:kafka-spark-influx-csv-analysis    作者:bwsw    | 项目源码 | 文件源码
def test_get_analysis_lambda_and_analysis_lambda_reduceByKey(self, mock_data_delivery, mock_alert_factory,
                                                                 mock_historical_data, mock_rdd):
        input_data_structure = {'rule': [{'key': True, 'func_name': '', 'input_field': 'ip'},
                                         {'key': False, 'func_name': 'Max', 'input_field': 'ip_size'},
                                         {'key': False, 'func_name': 'Sum', 'input_field': 'ip_size_sum'}],
                                'operation_type': 'reduceByKey'}
        enumerate_output_aggregation_field = {"ip_size": 1, "ip_size_sum": 2}

        def mock_foreachPartition(test_lambda):
            test_data = [(1, 2, 3)]
            return list(test_lambda(test_data))

        mock_rdd.foreachPartition.side_effect = mock_foreachPartition

        mock_class = MagicMock()
        mock_analysis = MagicMock()
        mock_class.MockAnalysis.return_value = mock_analysis
        mock_analysis.analysis = MagicMock()
        sys.modules['analysis.MockAnalysis'] = mock_class
        mock_history_data_singleton = MagicMock()
        mock_data_delivery.return_value = mock_history_data_singleton
        obj_mock_alert_factory = MagicMock()
        mock_alert_factory.return_value = obj_mock_alert_factory
        obj_mock_historical_data = MagicMock()
        mock_historical_data.return_value = obj_mock_historical_data

        analysis_factory = AnalysisFactory(self._config, input_data_structure, enumerate_output_aggregation_field)

        test_lambda = analysis_factory.get_analysis_lambda()

        self.assertIsInstance(test_lambda, types.LambdaType, "get_analysis_lambda should return lambda function")

        test_lambda(mock_rdd)

        self.assertTrue(mock_rdd.foreachPartition.called,
                        "Failed. The foreachPartition didn't call in lambda that returned by get_analysis_lambda.")

        mock_analysis.analysis.assert_called_with(obj_mock_historical_data, obj_mock_alert_factory)
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def get_config(self):
        if isinstance(self.mode, python_types.LambdaType):
            mode = func_dump(self.mode)
            mode_type = 'lambda'
        elif callable(self.mode):
            mode = self.mode.__name__
            mode_type = 'function'
        else:
            mode = self.mode
            mode_type = 'raw'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        if isinstance(self._output_mask, python_types.LambdaType):
            output_mask = func_dump(self._output_mask)
            output_mask_type = 'lambda'
        elif callable(self._output_mask):
            output_mask = self._output_mask.__name__
            output_mask_type = 'function'
        else:
            output_mask = self._output_mask
            output_mask_type = 'raw'

        return {'name': self.name,
                'mode': mode,
                'mode_type': mode_type,
                'concat_axis': self.concat_axis,
                'dot_axes': self.dot_axes,
                'output_shape': output_shape,
                'output_shape_type': output_shape_type,
                'output_mask': output_mask,
                'output_mask_type': output_mask_type,
                'arguments': self.arguments}
项目:third_person_im    作者:bstadie    | 项目源码 | 文件源码
def _extract_type(typ):
    if isinstance(typ, LambdaType):
        return typ()
    else:
        return typ
项目:modern-paste    作者:LINKIWI    | 项目源码 | 文件源码
def random_or_specified_value(cls, value):
        """
        Helper utility for choosing between a user-specified value for a field or a randomly generated value.

        :param value: Either a lambda type or a non-lambda type.
        :return: The value itself if not a lambda type, otherwise the value of the evaluated lambda (random value)
        """
        return value() if isinstance(value, types.LambdaType) else value
项目:textobjdetection    作者:andfoy    | 项目源码 | 文件源码
def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd
项目:FlowNetPytorch    作者:ClementPinard    | 项目源码 | 文件源码
def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd
项目:realtime-action-detection    作者:gurkirt    | 项目源码 | 文件源码
def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd
项目:rllabplusplus    作者:shaneshixiang    | 项目源码 | 文件源码
def _extract_type(typ):
    if isinstance(typ, LambdaType):
        return typ()
    else:
        return typ
项目:mimesis    作者:lk-geimfari    | 项目源码 | 文件源码
def __init__(self, schema: LambdaType) -> None:
        if callable(schema) and isinstance(schema, LambdaType):
            self.schema = schema
        else:
            raise UndefinedSchema()
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def get_argspec(ob):
    """Get a string describing the arguments for the given object."""
    argspec = ""
    if ob is not None:
        if isinstance(ob, type):
            fob = _find_constructor(ob)
            if fob is None:
                fob = lambda: None
        elif isinstance(ob, types.MethodType):
            fob = ob.__func__
        else:
            fob = ob
        if isinstance(fob, (types.FunctionType, types.LambdaType)):
            argspec = inspect.formatargspec(*inspect.getfullargspec(fob))
            pat = re.compile('self\,?\s*')
            argspec = pat.sub("", argspec)
        doc = getattr(ob, "__doc__", "")
        if doc:
            doc = doc.lstrip()
            pos = doc.find("\n")
            if pos < 0 or pos > 70:
                pos = 70
            if argspec:
                argspec += "\n"
            argspec += doc[:pos]
    return argspec

#################################################
#
# Test code
#
项目:deep-learning-keras-projects    作者:jasmeetsb    | 项目源码 | 文件源码
def get_config(self):
        if isinstance(self.mode, python_types.LambdaType):
            mode = func_dump(self.mode)
            mode_type = 'lambda'
        elif callable(self.mode):
            mode = self.mode.__name__
            mode_type = 'function'
        else:
            mode = self.mode
            mode_type = 'raw'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        if isinstance(self._output_mask, python_types.LambdaType):
            output_mask = func_dump(self._output_mask)
            output_mask_type = 'lambda'
        elif callable(self._output_mask):
            output_mask = self._output_mask.__name__
            output_mask_type = 'function'
        else:
            output_mask = self._output_mask
            output_mask_type = 'raw'

        return {'name': self.name,
                'mode': mode,
                'mode_type': mode_type,
                'concat_axis': self.concat_axis,
                'dot_axes': self.dot_axes,
                'output_shape': output_shape,
                'output_shape_type': output_shape_type,
                'output_mask': output_mask,
                'output_mask_type': output_mask_type,
                'arguments': self.arguments}
项目:depth-semantic-fully-conv    作者:iapatil    | 项目源码 | 文件源码
def __init__(self, lambd):
        assert type(lambd) is types.LambdaType
        self.lambd = lambd
项目:oil    作者:oilshell    | 项目源码 | 文件源码
def getmethparlist(ob):
    "Get strings describing the arguments for the given object"
    argText1 = argText2 = ""
    # bit of a hack for methods - turn it into a function
    # but we drop the "self" param.
    if type(ob)==types.MethodType:
        fob = ob.im_func
        argOffset = 1
    else:
        fob = ob
        argOffset = 0
    # Try and build one for Python defined functions
    if type(fob) in [types.FunctionType, types.LambdaType]:
        try:
            counter = fob.func_code.co_argcount
            items2 = list(fob.func_code.co_varnames[argOffset:counter])
            realArgs = fob.func_code.co_varnames[argOffset:counter]
            defaults = fob.func_defaults or []
            defaults = list(map(lambda name: "=%s" % repr(name), defaults))
            defaults = [""] * (len(realArgs)-len(defaults)) + defaults
            items1 = map(lambda arg, dflt: arg+dflt, realArgs, defaults)
            if fob.func_code.co_flags & 0x4:
                items1.append("*"+fob.func_code.co_varnames[counter])
                items2.append("*"+fob.func_code.co_varnames[counter])
                counter += 1
            if fob.func_code.co_flags & 0x8:
                items1.append("**"+fob.func_code.co_varnames[counter])
                items2.append("**"+fob.func_code.co_varnames[counter])
            argText1 = ", ".join(items1)
            argText1 = "(%s)" % argText1
            argText2 = ", ".join(items2)
            argText2 = "(%s)" % argText2
        except:
            pass
    return argText1, argText2
项目:python2-tracer    作者:extremecoders-re    | 项目源码 | 文件源码
def getmethparlist(ob):
    "Get strings describing the arguments for the given object"
    argText1 = argText2 = ""
    # bit of a hack for methods - turn it into a function
    # but we drop the "self" param.
    if type(ob)==types.MethodType:
        fob = ob.im_func
        argOffset = 1
    else:
        fob = ob
        argOffset = 0
    # Try and build one for Python defined functions
    if type(fob) in [types.FunctionType, types.LambdaType]:
        try:
            counter = fob.func_code.co_argcount
            items2 = list(fob.func_code.co_varnames[argOffset:counter])
            realArgs = fob.func_code.co_varnames[argOffset:counter]
            defaults = fob.func_defaults or []
            defaults = list(map(lambda name: "=%s" % repr(name), defaults))
            defaults = [""] * (len(realArgs)-len(defaults)) + defaults
            items1 = map(lambda arg, dflt: arg+dflt, realArgs, defaults)
            if fob.func_code.co_flags & 0x4:
                items1.append("*"+fob.func_code.co_varnames[counter])
                items2.append("*"+fob.func_code.co_varnames[counter])
                counter += 1
            if fob.func_code.co_flags & 0x8:
                items1.append("**"+fob.func_code.co_varnames[counter])
                items2.append("**"+fob.func_code.co_varnames[counter])
            argText1 = ", ".join(items1)
            argText1 = "(%s)" % argText1
            argText2 = ", ".join(items2)
            argText2 = "(%s)" % argText2
        except:
            pass
    return argText1, argText2
项目:single_shot_multibox_detector    作者:oarriaga    | 项目源码 | 文件源码
def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def get_config(self):
            if isinstance(self.function, python_types.LambdaType):
              function = func_dump(self.function)
              function_type = 'lambda'
            else:
              function = self.function.__name__
              function_type = 'function'

            config = {
                'function': function,
                'function_type': function_type,
                'arguments': self.arguments
            }
            base_config = super(Lambda, self).get_config()
            return dict(list(base_config.items()) + list(config.items()))
项目:sslstrip-hsts-openwrt    作者:adde88    | 项目源码 | 文件源码
def getSubview(self, request, node, model, viewName):
        """Get a sub-view from me.

        @returns: L{widgets.Widget}
        """
        view = None
        vm = getattr(self, 'wvfactory_' + viewName, None)
        if vm is None:
            vm = getattr(self, 'factory_' + viewName, None)
            if vm is not None:
                warnings.warn("factory_ methods are deprecated; please use "
                              "wvfactory_ instead", DeprecationWarning)
        if vm:
            if vm.func_code.co_argcount == 3 and not type(vm) == types.LambdaType:
                 warnings.warn("wvfactory_ methods take (request, node, "
                               "model) instead of (request, node) now. \n"
                               "Please instantiate your widgets with a "
                               "reference to model instead of self.model",
                               DeprecationWarning)
                 self.model = model
                 view = vm(request, node)
                 self.model = self.mainModel
            else:
                view = vm(request, node, model)

        setupMethod = getattr(self, 'wvupdate_' + viewName, None)
        if setupMethod:
            if view is None:
                view = widgets.Widget(model)
            view.setupMethods.append(setupMethod)
        return view
项目:QTAF    作者:Tencent    | 项目源码 | 文件源码
def isFunType(obj):
    '''??obj????????lambda??
    '''
    return isinstance(obj,types.MethodType) or isinstance(obj,types.LambdaType)
项目:QTAF    作者:Tencent    | 项目源码 | 文件源码
def _getFuncResult(func,args):
    '''?????????????????????????
    '''
    if not isinstance(func,types.MethodType) and not isinstance(func,types.LambdaType):
        raise TypeError("func type %s is not a MethodType or LambdaType" % type(func))
    if dict == type(args):
        actret = func(**args)
    elif tuple == type(args):
        actret = func(*args)
    else:
        actret = func(args)
    return actret
项目:QTAF    作者:Tencent    | 项目源码 | 文件源码
def _waitForCompareResult(func,args,compareobj,timeout=10,interval=0.5):
    ''' ????????

       :param actualfunc: ??????????
       :param actargs: ???????????
       :param compareobj: ??????????????????????
       :return comparefunc: True or False
       :param timeout: ????
       :param interval: ??????
       :return type: tuple,(True,try_count,actual,expect)
    '''
    start = time.time()
    waited = 0.0
    try_count = 0
    while True:
        try_count +=1
        actret = _getFuncResult(func,args)
        if isinstance(compareobj,types.MethodType) or isinstance(compareobj,types.LambdaType):
            expret = _getFuncResult(compareobj,actret)
            if expret == True:
                return True,try_count,actret,expret
        else:
            expret = compareobj
            if actret == expret:
                return True,try_count,actret,expret
        waited = time.time() - start
        if waited < timeout:
            time.sleep(min(interval, timeout - waited))
        else:
            return False,try_count,actret,expret
项目:yolov2    作者:zhangkaij    | 项目源码 | 文件源码
def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd
项目:two-stream-pytorch    作者:bryanyzhu    | 项目源码 | 文件源码
def __init__(self, lambd):
        assert type(lambd) is types.LambdaType
        self.lambd = lambd
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def get_config(self):
        if isinstance(self.mode, python_types.LambdaType):
            mode = func_dump(self.mode)
            mode_type = 'lambda'
        elif callable(self.mode):
            mode = self.mode.__name__
            mode_type = 'function'
        else:
            mode = self.mode
            mode_type = 'raw'

        if isinstance(self._output_shape, python_types.LambdaType):
            output_shape = func_dump(self._output_shape)
            output_shape_type = 'lambda'
        elif callable(self._output_shape):
            output_shape = self._output_shape.__name__
            output_shape_type = 'function'
        else:
            output_shape = self._output_shape
            output_shape_type = 'raw'

        if isinstance(self._output_mask, python_types.LambdaType):
            output_mask = func_dump(self._output_mask)
            output_mask_type = 'lambda'
        elif callable(self._output_mask):
            output_mask = self._output_mask.__name__
            output_mask_type = 'function'
        else:
            output_mask = self._output_mask
            output_mask_type = 'raw'

        return {'name': self.name,
                'mode': mode,
                'mode_type': mode_type,
                'concat_axis': self.concat_axis,
                'dot_axes': self.dot_axes,
                'output_shape': output_shape,
                'output_shape_type': output_shape_type,
                'output_mask': output_mask,
                'output_mask_type': output_mask_type,
                'arguments': self.arguments}