Python utils 模块,get_logger() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用utils.get_logger()

项目:BiliLive    作者:hr3lxphr6j    | 项目源码 | 文件源码
def __init__(self, room_url):
        """
        :param room_url: ???url
        """
        # Process.__init__(self)
        # ???url
        self.room_url = room_url
        # ??
        self.site_domain = urlparse(self.room_url)[1]
        # ???
        self.room_id = urlparse(self.room_url)[2].replace('/', '')
        # ????
        self.config = utils.load_config()
        # Logger
        self.logger = utils.get_logger()
        if self.site_domain == 'live.bilibili.com':
            self.room = BiliBiliLive(self.room_id)
        elif self.site_domain == 'www.panda.tv':
            self.room = PandaTVLive(self.room_id)
        elif self.site_domain == 'www.huomao.com':
            self.room = HuoMaoLive(self.room_id)
        elif self.site_domain == 'www.zhanqi.tv':
            self.room = ZhanqiLive(self.room_id)
项目:BiliLive    作者:hr3lxphr6j    | 项目源码 | 文件源码
def start():
    if len(sys.argv[1:]) == 0:
        config = utils.load_config()
    else:
        config = utils.load_config(sys.argv[1])
    logger = utils.get_logger()
    logger.info('????')
    room_count = len(config['ROOM_URLS'])
    if room_count == 0:
        logger.info('?????????????')
        exit(0)
    pool = ThreadPool(room_count)
    for room_url in config['ROOM_URLS']:
        m = Monitor(room_url)
        pool.apply_async(m.run)
    pool.close()
    try:
        pool.join()
    except KeyboardInterrupt:
        logger.warning('????')
        exit(1)
项目:ChineseNER    作者:zjy-ucas    | 项目源码 | 文件源码
def evaluate_line():
    config = load_config(FLAGS.config_file)
    logger = get_logger(FLAGS.log_file)
    # limit GPU memory
    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = True
    with open(FLAGS.map_file, "rb") as f:
        char_to_id, id_to_char, tag_to_id, id_to_tag = pickle.load(f)
    with tf.Session(config=tf_config) as sess:
        model = create_model(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_char, logger)
        while True:
            # try:
            #     line = input("???????:")
            #     result = model.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag)
            #     print(result)
            # except Exception as e:
            #     logger.info(e)

                line = input("???????:")
                result = model.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag)
                print(result)
项目:LSTM-CRF-For-Named-Entity-Recognition    作者:zpppy    | 项目源码 | 文件源码
def evaluate_line():
    config = load_config(FLAGS.config_file)
    logger = get_logger(FLAGS.log_file)
    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = True
    with open(FLAGS.map_file, "rb") as f:
        char_to_id, id_to_char, tag_to_id, id_to_tag = pickle.load(f)
    with tf.Session(config=tf_config) as sess:
        model = create_model(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_char, logger)
        while True:
            # try:
            #     line = input("???????:")
            #     result = model.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag)
            #     print(result)
            # except Exception as e:
            #     logger.info(e)

                line = input("???????:")
                result = model.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag)
                print(result)
项目:aes    作者:feidong1991    | 项目源码 | 文件源码
def build_model(opts, vocab_size=0, maxnum=50, maxlen=50, embedd_dim=50, embedding_weights=None, verbose=False, init_mean_value=None):

    N = maxnum
    L = maxlen
    logger = get_logger("Build model")
    logger.info("Model parameters: max_sentnum = %d, max_sentlen = %d, embedding dim = %s, lstm_units = %s, drop rate = %s, l2 = %s" % (N, L, embedd_dim,
        opts.lstm_units, opts.dropout, opts.l2_value))
    word_input = Input(shape=(N*L,), dtype='int32', name='word_input')
    x = Embedding(output_dim=embedd_dim, input_dim=vocab_size, input_length=N*L, weights=embedding_weights, name='x')(word_input)
    drop_x = Dropout(opts.dropout, name='drop_x')(x)

    resh_W = Reshape((N, L, embedd_dim), name='resh_W')(drop_x)

    z = TimeDistributed(LSTM(opts.lstm_units, return_sequences=True), name='z')(resh_W)
    avg_z = TimeDistributed(GlobalAveragePooling1D(), name='avg_z')(z)

    hz = LSTM(opts.lstm_units, return_sequences=True, name='hz')(avg_z)
    # TODO, random drop sentences
    drop_hz = Dropout(opts.dropout, name='drop_hz')(hz)
    avg_hz = GlobalAveragePooling1D(name='avg_hz')(drop_hz)
    y = Dense(output_dim=1, activation='sigmoid', name='output')(avg_hz)

    model = Model(input=word_input, output=y)

    if opts.init_bias and init_mean_value:
        logger.info("Initialise output layer bias with log(y_mean/1-y_mean)")
        bias_value = (np.log(init_mean_value) - np.log(1 - init_mean_value)).astype(K.floatx())
        model.layers[-1].b.set_value(bias_value)

    if verbose:
        model.summary()

    start_time = time.time()
    model.compile(loss='mse', optimizer='rmsprop')
    total_time = time.time() - start_time
    logger.info("Model compiled in %.4f s" % total_time)

    return model
项目:aes    作者:feidong1991    | 项目源码 | 文件源码
def build_bidirectional_model(opts, vocab_size=0, maxnum=50, maxlen=50, embedd_dim=50, embedding_weights=None, verbose=False, init_mean_value=None):

    N = maxnum
    L = maxlen
    logger = get_logger("Build bidirectional model")
    logger.info("Model parameters: max_sentnum = %d, max_sentlen = %d, embedding dim = %s, lstm_units = %s, drop rate = %s, l2 = %s" % (N, L, embedd_dim,
        opts.lstm_units, opts.dropout, opts.l2_value))
    word_input = Input(shape=(N*L,), dtype='int32', name='word_input')
    x = Embedding(output_dim=embedd_dim, input_dim=vocab_size, input_length=N*L, weights=embedding_weights, name='x')(word_input)
    drop_x = Dropout(opts.dropout, name='drop_x')(x)

    resh_W = Reshape((N, L, embedd_dim), name='resh_W')(drop_x)

    z_fwd = TimeDistributed(LSTM(opts.lstm_units, return_sequences=True), name='z_fwd')(resh_W)
    z_bwd = TimeDistributed(LSTM(opts.lstm_units, return_sequences=True, go_backwards=True), name='z_bwd')(resh_W)
    z_merged = merge([z_fwd, z_bwd], mode='concat', name='z_merged')

    avg_z = TimeDistributed(GlobalAveragePooling1D(), name='avg_z')(z_merged)

    hz_fwd = LSTM(opts.lstm_units, return_sequences=True, name='hz_fwd')(avg_z)
    hz_bwd = LSTM(opts.lstm_units, return_sequences=True, go_backwards=True, name='hz_bwd')(avg_z)
    hz_merged = merge([hz_fwd, hz_bwd], mode='concat', name='hz_merged')
    # avg_h = MeanOverTime(mask_zero=True, name='avg_h')(hz)
    avg_hz = GlobalAveragePooling1D(name='avg_hz')(hz_merged)
    y = Dense(output_dim=1, activation='sigmoid', name='output')(avg_hz)

    model = Model(input=word_input, output=y)
    if opts.init_bias and init_mean_value:
        logger.info("Initialise output layer bias with log(y_mean/1-y_mean)")
        bias_value = (np.log(init_mean_value) - np.log(1 - init_mean_value)).astype(K.floatx())
        model.layers[-1].b.set_value(bias_value)
    if verbose:
        model.summary()

    start_time = time.time()
    model.compile(loss='mse', optimizer='rmsprop')
    total_time = time.time() - start_time
    logger.info("Model compiled in %.4f s" % total_time)

    return model
项目:aes    作者:feidong1991    | 项目源码 | 文件源码
def build_attention_model(opts, vocab_size=0, maxnum=50, maxlen=50, embedd_dim=50, embedding_weights=None, verbose=False, init_mean_value=None):
    N = maxnum
    L = maxlen

    logger = get_logger('Build attention pooling model')
    logger.info("Model parameters: max_sentnum = %d, max_sentlen = %d, embedding dim = %s, lstm_units = %s, drop rate = %s, l2 = %s" % (N, L, embedd_dim,
        opts.lstm_units, opts.dropout, opts.l2_value))
    word_input = Input(shape=(N*L,), dtype='int32', name='word_input')
    x = Embedding(output_dim=embedd_dim, input_dim=vocab_size, input_length=N*L, weights=embedding_weights, name='x')(word_input)
    drop_x = Dropout(opts.dropout, name='drop_x')(x)

    resh_W = Reshape((N, L, embedd_dim), name='resh_W')(drop_x)

    z = TimeDistributed(LSTM(opts.lstm_units, return_sequences=True), name='z')(resh_W)
    avg_z = TimeDistributed(GlobalAveragePooling1D(), name='avg_z')(z)

    hz = LSTM(opts.lstm_units, return_sequences=True, name='hz')(avg_z)
    # avg_h = MeanOverTime(mask_zero=True, name='avg_h')(hz)
    # avg_hz = GlobalAveragePooling1D(name='avg_hz')(hz)
    attent_hz = Attention(name='attent_hz')(hz)
    y = Dense(output_dim=1, activation='sigmoid', name='output')(attent_hz)

    model = Model(input=word_input, output=y)
    if opts.init_bias and init_mean_value:
        logger.info("Initialise output layer bias with log(y_mean/1-y_mean)")
        bias_value = (np.log(init_mean_value) - np.log(1 - init_mean_value)).astype(K.floatx())
        model.layers[-1].b.set_value(bias_value)
    if verbose:
        model.summary()

    start_time = time.time()
    model.compile(loss='mse', optimizer='rmsprop')
    total_time = time.time() - start_time
    logger.info("Model compiled in %.4f s" % total_time)

    return model
项目:aes    作者:feidong1991    | 项目源码 | 文件源码
def build_attention2_model(opts, vocab_size=0, maxnum=50, maxlen=50, embedd_dim=50, embedding_weights=None, verbose=False, init_mean_value=None):
    N = maxnum
    L = maxlen

    logger = get_logger('Build attention pooling model')
    logger.info("Model parameters: max_sentnum = %d, max_sentlen = %d, embedding dim = %s, lstm_units = %s, drop rate = %s, l2 = %s" % (N, L, embedd_dim,
        opts.lstm_units, opts.dropout, opts.l2_value))
    word_input = Input(shape=(N*L,), dtype='int32', name='word_input')
    x = Embedding(output_dim=embedd_dim, input_dim=vocab_size, input_length=N*L, weights=embedding_weights, name='x')(word_input)
    drop_x = Dropout(opts.dropout, name='drop_x')(x)

    resh_W = Reshape((N, L, embedd_dim), name='resh_W')(drop_x)

    z = TimeDistributed(LSTM(opts.lstm_units, return_sequences=True), name='z')(resh_W)
    att_z = TimeDistributed(Attention(name='att_z'))(z)

    hz = LSTM(opts.lstm_units, return_sequences=True, name='hz')(att_z)
    # avg_h = MeanOverTime(mask_zero=True, name='avg_h')(hz)
    # avg_hz = GlobalAveragePooling1D(name='avg_hz')(hz)
    attent_hz = Attention(name='attent_hz')(hz)
    y = Dense(output_dim=1, activation='sigmoid', name='output')(attent_hz)

    model = Model(input=word_input, output=y)
    if opts.init_bias and init_mean_value:
        logger.info("Initialise output layer bias with log(y_mean/1-y_mean)")
        bias_value = (np.log(init_mean_value) - np.log(1 - init_mean_value)).astype(K.floatx())
        model.layers[-1].b.set_value(bias_value)
    if verbose:
        model.summary()

    start_time = time.time()
    model.compile(loss='mse', optimizer='rmsprop')
    total_time = time.time() - start_time
    logger.info("Model compiled in %.4f s" % total_time)

    return model
项目:NN_NER_tensorFlow    作者:LopezGG    | 项目源码 | 文件源码
def __init__(self, name, keep_growing=True):
        self.__name = name

        self.instance2index = {}
        self.instances = []
        self.keep_growing = keep_growing

        # Index 0 is occupied by default, all else following. I believe this is to hold unk variables
        self.default_index = 0
        self.next_index = 1

        self.logger = utils.get_logger('Alphabet')