Python utils 模块,Dequantize() 实例源码

我们从Python开源项目中,提取了以下23个代码示例,用于说明如何使用utils.Dequantize()

项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_frame_input_feature(input_file):
    features = []
    record_iterator = tf.python_io.tf_record_iterator(path=input_file)
    for i, string_record in enumerate(record_iterator):
        example = tf.train.SequenceExample()
        example.ParseFromString(string_record)

        # traverse the Example format to get data
        video_id = example.context.feature['video_id'].bytes_list.value[0]
        label = example.context.feature['labels'].int64_list.value[:]
        rgbs = []
        audios = []
        rgb_feature = example.feature_lists.feature_list['rgb'].feature
        for i in range(len(rgb_feature)):
            rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            rgb = utils.Dequantize(rgb, 2, -2)
            rgbs.append(rgb)
        audio_feature = example.feature_lists.feature_list['audio'].feature
        for i in range(len(audio_feature)):
            audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            audio = utils.Dequantize(audio, 2, -2)
            audios.append(audio)
        rgbs = np.array(rgbs)
        audios = np.array(audios)
        features.append((video_id, label, rgbs, audios))
    return features
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_frame_input_feature(input_file):
    features = []
    record_iterator = tf.python_io.tf_record_iterator(path=input_file)
    for i, string_record in enumerate(record_iterator):
        example = tf.train.SequenceExample()
        example.ParseFromString(string_record)

        # traverse the Example format to get data
        video_id = example.context.feature['video_id'].bytes_list.value[0]
        label = example.context.feature['labels'].int64_list.value[:]
        rgbs = []
        audios = []
        rgb_feature = example.feature_lists.feature_list['rgb'].feature
        for i in range(len(rgb_feature)):
            rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            rgb = utils.Dequantize(rgb, 2, -2)
            rgbs.append(rgb)
        audio_feature = example.feature_lists.feature_list['audio'].feature
        for i in range(len(audio_feature)):
            audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            audio = utils.Dequantize(audio, 2, -2)
            audios.append(audio)
        rgbs = np.array(rgbs)
        audios = np.array(audios)
        features.append((video_id, label, rgbs, audios))
    return features
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_frame_input_feature(input_file):
    features = []
    record_iterator = tf.python_io.tf_record_iterator(path=input_file)
    for i, string_record in enumerate(record_iterator):
        example = tf.train.SequenceExample()
        example.ParseFromString(string_record)

        # traverse the Example format to get data
        video_id = example.context.feature['video_id'].bytes_list.value[0]
        label = example.context.feature['labels'].int64_list.value[:]
        rgbs = []
        audios = []
        rgb_feature = example.feature_lists.feature_list['rgb'].feature
        for i in range(len(rgb_feature)):
            rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            rgb = utils.Dequantize(rgb, 2, -2)
            rgbs.append(rgb)
        audio_feature = example.feature_lists.feature_list['audio'].feature
        for i in range(len(audio_feature)):
            audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32)
            audio = utils.Dequantize(audio, 2, -2)
            audios.append(audio)
        rgbs = np.array(rgbs)
        audios = np.array(audios)
        features.append((video_id, label, rgbs, audios))
    return features
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:yt8m    作者:forwchen    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:youtube-8m    作者:google    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:Video-Classification    作者:boyaolin    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:Youtube-8M-WILLOW    作者:antoine77340    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def frame_example_2_np(seq_example_bytes, 
                       max_quantized_value=2,
                       min_quantized_value=-2):
  feature_names=['rgb','audio']
  feature_sizes = [1024, 128]
  with tf.Graph().as_default():
    contexts, features = tf.parse_single_sequence_example(
        seq_example_bytes,
        context_features={"video_id": tf.FixedLenFeature(
            [], tf.string),
                          "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string)
            for feature_name in feature_names
        })

    decoded_features = { name: tf.reshape(
        tf.cast(tf.decode_raw(features[name], tf.uint8), tf.float32),
        [-1, size]) for name, size in zip(feature_names, feature_sizes)
        }
    feature_matrices = {
        name: utils.Dequantize(decoded_features[name],
          max_quantized_value, min_quantized_value) for name in feature_names}

    with tf.Session() as sess:
      vid = sess.run(contexts['video_id'])
      labs = sess.run(contexts['labels'].values)
      rgb = sess.run(feature_matrices['rgb'])
      audio = sess.run(feature_matrices['audio'])

  return vid, labs, rgb, audio


#%% Split frame level file into three video level files: all, 1st half, 2nd half.
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def build_graph():
    feature_names=['rgb','audio']
    feature_sizes = [1024, 128] 
    max_quantized_value=2
    min_quantized_value=-2

    seq_example_bytes = tf.placeholder(tf.string)
    contexts, features = tf.parse_single_sequence_example(
        seq_example_bytes,
        context_features={"video_id": tf.FixedLenFeature(
            [], tf.string),
                          "labels": tf.VarLenFeature(tf.int64)},
        sequence_features={
            feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string)
            for feature_name in feature_names
        })

    decoded_features = { name: tf.reshape(
        tf.cast(tf.decode_raw(features[name], tf.uint8), tf.float32),
        [-1, size]) for name, size in zip(feature_names, feature_sizes)
        }
    feature_matrices = {
        name: utils.Dequantize(decoded_features[name],
          max_quantized_value, min_quantized_value) for name in feature_names}

    tf.add_to_collection("vid_tsr", contexts['video_id'])
    tf.add_to_collection("labs_tsr", contexts['labels'].values)
    tf.add_to_collection("rgb_tsr", feature_matrices['rgb'])
    tf.add_to_collection("audio_tsr", feature_matrices['audio'])
    tf.add_to_collection("seq_example_bytes", seq_example_bytes)

#   with tf.Session() as sess:
#       writer = tf.summary.FileWriter('./graphs', sess.graph)
项目:Y8M    作者:mpekalski    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:Youtube8mdataset_kagglechallenge    作者:jasonlee27    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:Youtube8mdataset_kagglechallenge    作者:jasonlee27    | 项目源码 | 文件源码
def prepare_reader(self,
                       filename_queue,
                       max_quantized_value=2,
                       min_quantized_value=-2):
        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(filename_queue)
        context_features, sequence_features = {"video_id": tf.FixedLenFeature([], tf.string),
                                               "labels": tf.VarLenFeature(tf.int64)}, None
        if self.sequence_data:
            sequence_features = {self.feature_name[0]: tf.FixedLenSequenceFeature([], dtype=tf.string),
                                 self.feature_name[1]: tf.FixedLenSequenceFeature([], dtype=tf.string), }
        else:
            context_features[self.feature_name[0]] = tf.FixedLenFeature(self.feature_size[0], tf.float32)
            context_features[self.feature_name[1]] = tf.FixedLenFeature(self.feature_size[1], tf.float32)

        contexts, features = tf.parse_single_sequence_example(serialized_example,
                                                              context_features=context_features,
                                                              sequence_features=sequence_features)
        labels = (tf.cast(contexts["labels"].values, tf.int64))

        if self.sequence_data:
            decoded_features = tf.reshape(tf.cast(tf.decode_raw(features[self.feature_name[0]], tf.uint8), tf.float32),
                                          [-1, self.feature_size[0]])
            video_matrix = Dequantize(decoded_features, max_quantized_value, min_quantized_value)

            decoded_features = tf.reshape(tf.cast(tf.decode_raw(features[self.feature_name[1]], tf.uint8), tf.float32),
                                          [-1, self.feature_size[1]])
            audio_matrix = Dequantize(decoded_features, max_quantized_value, min_quantized_value)

            num_frames = tf.minimum(tf.shape(decoded_features)[0], self.max_frames)
        else:
            video_matrix = contexts[self.feature_name[0]]
            audio_matrix = contexts[self.feature_name[1]]
            num_frames = tf.constant(-1)

        # Pad or truncate to 'max_frames' frames.
        # video_matrix = resize_axis(video_matrix, 0, self.max_frames)
        return contexts["video_id"], video_matrix, audio_matrix, labels, num_frames
项目:youtube    作者:taufikxu    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:kaggle-youtube-8m    作者:liufuyang    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:u8m_test    作者:hxkk    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:youtube-8m    作者:Tsingularity    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:youtube-8m    作者:Tsingularity    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames
项目:youtube-8m    作者:Tsingularity    | 项目源码 | 文件源码
def get_video_matrix(self,
                       features,
                       feature_size,
                       max_frames,
                       max_quantized_value,
                       min_quantized_value):
    """Decodes features from an input string and quantizes it.

    Args:
      features: raw feature values
      feature_size: length of each frame feature vector
      max_frames: number of frames (rows) in the output feature_matrix
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      feature_matrix: matrix of all frame-features
      num_frames: number of frames in the sequence
    """
    decoded_features = tf.reshape(
        tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
        [-1, feature_size])

    num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
    feature_matrix = utils.Dequantize(decoded_features,
                                      max_quantized_value,
                                      min_quantized_value)
    feature_matrix = resize_axis(feature_matrix, 0, max_frames)
    return feature_matrix, num_frames