Python utils 模块,make_dir() 实例源码

我们从Python开源项目中,提取了以下20个代码示例,用于说明如何使用utils.make_dir()

项目:douban    作者:awolfly9    | 项目源码 | 文件源码
def __init__(self, *a, **kw):
        super(Movie, self).__init__(*a, **kw)
        self.log_dir = 'log/%s' % self.name

        self.sql = SqlHelper()
        self.headers = {
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
            'Accept-Encoding': 'gzip, deflate, br',
            'Accept-Language': 'en-US,en;q=0.5',
            'Connection': 'keep-alive',
            'Host': 'movie.douban.com',
            'Upgrade-Insecure-Requests': '1',
            'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:51.0) Gecko/20100101 Firefox/51.0',
        }

        utils.make_dir(self.log_dir)
        self.init()
项目:douban    作者:awolfly9    | 项目源码 | 文件源码
def __init__(self, *a, **kw):
        super(Movieurls, self).__init__(*a, **kw)
        self.log_dir = 'log/%s' % self.name

        utils.make_dir(self.log_dir)

        self.sql = SqlHelper()
        self.headers = {
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
            'Accept-Encoding': 'gzip, deflate, br',
            'Accept-Language': 'en-US,en;q=0.5',
            'Connection': 'keep-alive',
            'Host': 'movie.douban.com',
            'Upgrade-Insecure-Requests': '1',
            'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:51.0) Gecko/20100101 Firefox/51.0',
        }

        self.init()
项目:douban    作者:awolfly9    | 项目源码 | 文件源码
def __init__(self, *a, **kw):
        super(Bookurls, self).__init__(*a, **kw)
        self.log_dir = 'log/%s' % self.name

        utils.make_dir(self.log_dir)

        self.sql = SqlHelper()
        self.headers = {
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
            'Accept-Encoding': 'gzip, deflate, br',
            'Accept-Language': 'en-US,en;q=0.5',
            'Connection': 'keep-alive',
            'Host': 'book.douban.com',
            'Upgrade-Insecure-Requests': '1',
            'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:51.0) Gecko/20100101 Firefox/51.0',
        }

        self.init()
项目:douban    作者:awolfly9    | 项目源码 | 文件源码
def __init__(self, *a, **kw):
        super(Book, self).__init__(*a, **kw)
        self.log_dir = 'log/%s' % self.name

        self.sql = SqlHelper()
        self.headers = {
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
            'Accept-Encoding': 'gzip, deflate, br',
            'Accept-Language': 'en-US,en;q=0.5',
            'Connection': 'keep-alive',
            'Host': 'book.douban.com',
            'Upgrade-Insecure-Requests': '1',
            'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:51.0) Gecko/20100101 Firefox/51.0',
        }

        utils.make_dir(self.log_dir)
        self.init()
项目:jd_analysis    作者:awolfly9    | 项目源码 | 文件源码
def __init__(self, name = None, **kwargs):
        super(JDCommentSpider, self).__init__(name, **kwargs)
        self.url = kwargs.get("url")
        self.guid = kwargs.get('guid', 'guid')
        self.product_id = kwargs.get('product_id')
        # self.url = 'https://item.jd.com/11478178241.html'
        # self.url = 'https://item.jd.com/4142680.html'
        # self.url = 'https://item.jd.com/3133859.html'
        # self.url = 'https://item.jd.com/3995645.html'
        # self.product_id = 3995645
        self.log('product_id:%s' % self.product_id)
        self.item_table = 'item_%s' % self.product_id
        self.urls_key = '%s_urls' % self.product_id

        self.log_dir = 'log/%s' % self.product_id
        self.is_record_page = False

        self.sql = kwargs.get('sql')
        self.red = kwargs.get('red')
        proxymng.red = self.red

        if self.is_record_page:
            utils.make_dir(self.log_dir)

        self.init()
项目:jd_analysis    作者:awolfly9    | 项目源码 | 文件源码
def __init__(self, name = None, **kwargs):
        super(JDItemInfoSpider, self).__init__(name, **kwargs)
        self.url = kwargs.get("url")
        self.guid = kwargs.get('guid', 'guid')
        self.product_id = kwargs.get('product_id')
        # self.url = 'https://item.jd.com/11478178241.html'
        # self.url = 'https://item.jd.com/4142680.html'
        # self.url = 'https://item.jd.com/3133859.html'
        # self.url = 'https://item.jd.com/3995645.html'
        # self.product_id = 3995645
        self.log('product_id:%s' % self.product_id)
        self.item_table = 'item_%s' % self.product_id
        self.urls_key = '%s_urls' % self.product_id

        self.log_dir = 'log/%s' % self.product_id
        self.is_record_page = False

        self.sql = kwargs.get('sql')
        self.red = kwargs.get('red')

        if self.is_record_page:
            utils.make_dir(self.log_dir)
项目:rental    作者:meihuanyu    | 项目源码 | 文件源码
def init(self):
        self.meta = {
            'download_timeout': self.timeout,
        }

        self.dir_log = 'log/proxy/%s' % self.name
        utils.make_dir(self.dir_log)
        self.sql.init_proxy_table(config.free_ipproxy_table)
项目:rental    作者:meihuanyu    | 项目源码 | 文件源码
def init(self):
        self.dir_log = 'log/validator/%s' % self.name
        utils.make_dir(self.dir_log)

        self.sql.init_proxy_table(self.name)
项目:jd_comment    作者:awolfly9    | 项目源码 | 文件源码
def __init__(self, name = None, **kwargs):
        super(JDSpider, self).__init__(name, **kwargs)
        self.product_id = kwargs.get('product_id', -1)
        self.log('product_id:%s' % self.product_id)
        self.item_table = 'item_%s' % self.product_id
        self.product_page = '%s_page' % self.product_id

        self.log_dir = 'log/%s' % self.product_id
        self.is_record_page = False
        if self.is_record_page:
            utils.make_dir(self.log_dir)

        self.sql = SqlHelper()
        self.red = redis.StrictRedis(host = config.redis_host, port = config.redis_part, db = config.redis_db,
                                     password = config.redis_pass)
项目:IPProxyTool    作者:awolfly9    | 项目源码 | 文件源码
def init(self):
        self.meta = {
            'download_timeout': self.timeout,
        }

        self.dir_log = 'log/proxy/%s' % self.name
        utils.make_dir(self.dir_log)
        self.sql.init_proxy_table(config.free_ipproxy_table)
项目:IPProxyTool    作者:awolfly9    | 项目源码 | 文件源码
def init(self):
        self.dir_log = 'log/validator/%s' % self.name
        utils.make_dir(self.dir_log)

        self.sql.init_proxy_table(self.name)
项目:NeuroSurf    作者:pelednoam    | 项目源码 | 文件源码
def make_dir(fol):
    if not os.path.isdir(fol):
        os.makedirs(fol)
    return fol
项目:NeuroSurf    作者:pelednoam    | 项目源码 | 文件源码
def call_script(script_fname, args, log_name=''):
    if args.blender_fol == '':
        args.blender_fol = get_blender_dir()
    if not op.isdir(args.blender_fol):
        print('No Blender folder!')
        return

    logs_fol = utils.make_dir(op.join(utils.get_parent_fol(__file__, 4), 'logs'))
    if log_name == '':
        log_name = utils.namebase(script_fname)
    if len(args.subjects) == 0:
        args.subjects = [args.subject]
    for subject in args.subjects:
        args.subject = subject
        args.subjects = ''
        print('*********** {} ***********'.format(subject))
        call_args = create_call_args(args)
        blend_fname = get_subject_fname(args)
        log_fname = op.join(logs_fol, '{}.log'.format(log_name))
        cmd = '{blender_exe} {blend_fname} --background --python {script_fname} {call_args}'.format( # > {log_fname}
            blender_exe=op.join(args.blender_fol, 'blender'),
            blend_fname = blend_fname, script_fname = script_fname, call_args=call_args, log_fname = log_fname)
        mmvt_addon_fol = utils.get_parent_fol(__file__, 2)
        os.chdir(mmvt_addon_fol)
        print(cmd)
        utils.run_script(cmd)
    print('Finish! For more details look in {}'.format(log_fname))
项目:NeuroSurf    作者:pelednoam    | 项目源码 | 文件源码
def get_figures_dir(args):
    figures_dir =  op.join(get_mmvt_dir(), args.subject, 'figures')
    make_dir(figures_dir)
    return figures_dir
项目:tf_oreilly    作者:chiphuyen    | 项目源码 | 文件源码
def build_vocab(words, vocab_size):
    """ Build vocabulary of VOCAB_SIZE most frequent words """
    dictionary = dict()
    count = [('UNK', -1)]
    count.extend(Counter(words).most_common(vocab_size - 1))
    index = 0
    utils.make_dir('processed')
    with open('processed/vocab_1000.tsv', "w") as f:
        for word, _ in count:
            dictionary[word] = index
            if index < 1000:
                f.write(word + "\n")
            index += 1
    index_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
    return dictionary, index_dictionary
项目:unity    作者:awolfly9    | 项目源码 | 文件源码
def __init__(self, *a, **kwargs):
        super(AssetStoreSpider, self).__init__(*a, **kwargs)

        # ?????????
        self.dir_plugins = 'Plugins/'
        self.dir_all = self.dir_plugins + 'all'

        utils.make_dir(self.dir_plugins)
        utils.make_dir(self.dir_all)

        # ?????????
        self.plugin_list = []

        self.sql = SqlHelper()
        self.table_name = config.assetstore_table_name

        self.priority_adjust = 2

        # unity ???
        self.unity_version = ''

        # ?? header
        self.headers = {
            'Accept': '*/*',
            'Accept-Encoding': 'gzip, deflate, br',
            'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3',
            'Connection': 'keep-alive',
            'Host': 'www.assetstore.unity3d.com',
            'Referer': 'https://www.assetstore.unity3d.com/en/',
            'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:50.0) Gecko/20100101 Firefox/50.0',
            'X-Kharma-Version': self.unity_version,
            'X-Requested-With': 'UnityAssetStore',
            'X-Unity-Session': '26c4202eb475d02864b40827dfff11a14657aa41',
        }

        self.init()
项目:tensorflow-beginner    作者:SherlockLiao    | 项目源码 | 文件源码
def build_vocab(words, vocab_size):
    """ Build vocabulary of VOCAB_SIZE most frequent words """
    dictionary = dict()
    count = [('UNK', -1)]
    count.extend(Counter(words).most_common(vocab_size - 1))
    index = 0
    utils.make_dir('processed')
    with open('processed/vocab_1000.tsv', "w") as f:
        for word, _ in count:
            dictionary[word] = index
            if index < 1000:
                f.write(word + "\n")
            index += 1
    index_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
    return dictionary, index_dictionary
项目:tf_oreilly    作者:chiphuyen    | 项目源码 | 文件源码
def train_model(model, batch_gen, num_train_steps, weights_fld):
    saver = tf.train.Saver() # defaults to saving all variables - in this case embed_matrix, nce_weight, nce_bias

    initial_step = 0
    utils.make_dir('checkpoints')
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint'))
        # if that checkpoint exists, restore from checkpoint
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)

        total_loss = 0.0 # we use this to calculate late average loss in the last SKIP_STEP steps
        writer = tf.summary.FileWriter('improved_graph/lr' + str(LEARNING_RATE), sess.graph)
        initial_step = model.global_step.eval()
        for index in range(initial_step, initial_step + num_train_steps):
            centers, targets = next(batch_gen)
            feed_dict={model.center_words: centers, model.target_words: targets}
            loss_batch, _, summary = sess.run([model.loss, model.optimizer, model.summary_op], 
                                              feed_dict=feed_dict)
            writer.add_summary(summary, global_step=index)
            total_loss += loss_batch
            if (index + 1) % SKIP_STEP == 0:
                print('Average loss at step {}: {:5.1f}'.format(index, total_loss / SKIP_STEP))
                total_loss = 0.0
                saver.save(sess, 'checkpoints/skip-gram', index)

        ####################
        # code to visualize the embeddings. uncomment the below to visualize embeddings
        # run "'tensorboard --logdir='processed'" to see the embeddings
        # final_embed_matrix = sess.run(model.embed_matrix)

        # # it has to variable. constants don't work here. you can't reuse model.embed_matrix
        # embedding_var = tf.Variable(final_embed_matrix[:1000], name='embedding')
        # sess.run(embedding_var.initializer)

        # config = projector.ProjectorConfig()
        # summary_writer = tf.summary.FileWriter('processed')

        # # add embedding to the config file
        # embedding = config.embeddings.add()
        # embedding.tensor_name = embedding_var.name

        # # link this tensor to its metadata file, in this case the first 500 words of vocab
        # embedding.metadata_path = 'processed/vocab_1000.tsv'

        # # saves a configuration file that TensorBoard will read during startup.
        # projector.visualize_embeddings(summary_writer, config)
        # saver_embed = tf.train.Saver([embedding_var])
        # saver_embed.save(sess, 'processed/model3.ckpt', 1)
项目:unity    作者:awolfly9    | 项目源码 | 文件源码
def get_categories(self, response):
        self.write_file(self.dir_plugins + 'categories.json', response.body)

        # ????? json ??
        categories = json.loads(response.body)

        for category in categories.get('categories'):
            name = category.get('name', '')
            subs = category.get('subs', '')
            dir_name = self.dir_plugins + name
            utils.make_dir(dir_name)

            if subs is not '':
                self.get_all_subs(subs, dir_name)
            else:
                # ????
                name = category.get('name', '')
                count = category.get('count', 0)
                id = category.get('id', 0)
                child_subs = category.get('subs', '')

                plugin = {}
                plugin['name'] = name
                plugin['count'] = count
                plugin['id'] = id
                plugin['dir_name'] = dir_name
                if child_subs == '':
                    plugin['child'] = 'yes'
                else:
                    plugin['child'] = 'no'

                self.plugin_list.append(plugin)

        for plugin in self.plugin_list:
            id = plugin.get('id', '')
            count = plugin.get('count')
            dir_name = plugin.get('dir_name')
            name = plugin.get('name')

            yield Request(
                    url = 'https://www.assetstore.unity3d.com/api/en-US/search/results.json?q=' + 'category:' + id + \
                          '&rows=' + count + '&page=' + str(1) + '&order_by=popularity' + '&engine=solr',
                    method = 'GET',
                    dont_filter = True,
                    headers = self.headers,
                    meta = {
                        'dir_name': dir_name,
                        'name': name,
                        'id': id,
                        'download_timeout': 60,
                        'is_proxy': False,
                    },
                    callback = self.get_plugin_list,
                    errback = self.error_parse,
            )

    # ??????? unity ??
    # ????????????
项目:tensorflow-beginner    作者:SherlockLiao    | 项目源码 | 文件源码
def train_model(model, batch_gen, num_train_steps, weights_fld):
    saver = tf.train.Saver(
    )  # defaults to saving all variables - in this case embed_matrix, nce_weight, nce_bias

    initial_step = 0
    utils.make_dir('checkpoints')
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        ckpt = tf.train.get_checkpoint_state(
            os.path.dirname('checkpoints/checkpoint'))
        # if that checkpoint exists, restore from checkpoint
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)

        total_loss = 0.0  # we use this to calculate late average loss in the last SKIP_STEP steps
        writer = tf.summary.FileWriter(
            'improved_graph/lr' + str(LEARNING_RATE), sess.graph)
        initial_step = model.global_step.eval()
        for index in range(initial_step, initial_step + num_train_steps):
            centers, targets = next(batch_gen)
            feed_dict = {
                model.center_words: centers,
                model.target_words: targets
            }
            loss_batch, _, summary = sess.run(
                [model.loss, model.optimizer, model.summary_op],
                feed_dict=feed_dict)
            writer.add_summary(summary, global_step=index)
            total_loss += loss_batch
            if (index + 1) % SKIP_STEP == 0:
                print('Average loss at step {}: {:5.1f}'.format(
                    index, total_loss / SKIP_STEP))
                total_loss = 0.0
                saver.save(sess, 'checkpoints/skip-gram', index)

        ####################
        # code to visualize the embeddings. uncomment the below to visualize embeddings
        # run "'tensorboard --logdir='processed'" to see the embeddings
        final_embed_matrix = sess.run(model.embed_matrix)

        # # it has to variable. constants don't work here. you can't reuse model.embed_matrix
        embedding_var = tf.Variable(
            final_embed_matrix[:1000], name='embedding')
        sess.run(embedding_var.initializer)

        config = projector.ProjectorConfig()
        summary_writer = tf.summary.FileWriter('processed')

        # # add embedding to the config file
        embedding = config.embeddings.add()
        embedding.tensor_name = embedding_var.name

        # # link this tensor to its metadata file, in this case the first 500 words of vocab
        embedding.metadata_path = 'processed/vocab_1000.tsv'

        # # saves a configuration file that TensorBoard will read during startup.
        projector.visualize_embeddings(summary_writer, config)
        saver_embed = tf.train.Saver([embedding_var])
        saver_embed.save(sess, 'processed/model3.ckpt', 1)