Python utils 模块,visualize() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用utils.visualize()

项目:Magic-Pixel    作者:zhwhong    | 项目源码 | 文件源码
def main(_):
    pp.pprint(flags.FLAGS.__flags)

    if not os.path.exists(FLAGS.checkpoint_dir):
        os.makedirs(FLAGS.checkpoint_dir)
    if not os.path.exists(FLAGS.sample_dir):
        os.makedirs(FLAGS.sample_dir)

    with tf.Session() as sess:
        if FLAGS.dataset == 'mnist':
            dcgan = DCGAN(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size, y_dim=10,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir)
        else:
            dcgan = DCGAN(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir)

        if FLAGS.is_train:
            dcgan.train(FLAGS)
        else:
            if FLAGS.is_single:
                dcgan.single_test(FLAGS.checkpoint_dir, FLAGS.file_name)
            elif FLAGS.is_small:
                dcgan.batch_test2(FLAGS.checkpoint_dir)
            else:
                dcgan.batch_test(FLAGS.checkpoint_dir, FLAGS.file_name)
            # dcgan.load(FLAGS.checkpoint_dir)
            # dcgan.single_test(FLAGS.checkpoint_dir)
            # dcgan.batch_test(FLAGS.checkpoint_dir)

        """
        if FLAGS.visualize:
            to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
                                          [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
                                          [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
                                          [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
                                          [dcgan.h4_w, dcgan.h4_b, None])

            # Below is codes for visualization
            OPTION = 2
            visualize(sess, dcgan, FLAGS, OPTION)
        """
项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def main(_):
    loader = Loader(FLAGS.data_dir, FLAGS.data, FLAGS.batch_size)
    print("# of data: {}".format(loader.data_num))
    with tf.Session() as sess:                                
        lsgan = LSGAN([FLAGS.batch_size, 112, 112, 3])
        sess.run(tf.global_variables_initializer())

        for epoch in range(10000):
            loader.reset()

            for step in range(int(loader.batch_num/FLAGS.d)):
                if (step == 0 and epoch % 1 == 100):
                    utils.visualize(sess.run(lsgan.gen_img), epoch)

                for _ in range(FLAGS.d):
                    batch = np.asarray(loader.next_batch(), dtype=np.float32)
                    batch = (batch-127.5) / 127.5
                    #print("{}".format(batch.shape))
                    feed={lsgan.X: batch}
                    _ = sess.run(lsgan.d_train_op, feed_dict=feed)
                        #utils.visualize(batch, (epoch+1)*100)

                #cv2.namedWindow("window")
                #cv2.imshow("window", cv2.cvtColor(batch[0], cv2.COLOR_RGB2BGR))
                #cv2.waitKey(0)
                #cv2.destroyAllWindows()

                _ = sess.run(lsgan.g_train_op)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def main(_):
    pp.pprint(flags.FLAGS.__flags)
    sample_dir_ = os.path.join(FLAGS.sample_dir, FLAGS.name)
    checkpoint_dir_ = os.path.join(FLAGS.checkpoint_dir, FLAGS.name)
    log_dir_ = os.path.join(FLAGS.log_dir, FLAGS.name)
    if not os.path.exists(checkpoint_dir_):
        os.makedirs(checkpoint_dir_)
    if not os.path.exists(sample_dir_):
        os.makedirs(sample_dir_)
    if not os.path.exists(log_dir_):
        os.makedirs(log_dir_)

    with tf.Session() as sess:
        if FLAGS.dataset == 'mnist':
            dcgan = DCGAN(sess, config=FLAGS, batch_size=FLAGS.batch_size, output_size=28, c_dim=1,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=checkpoint_dir_, sample_dir=sample_dir_, log_dir=log_dir_)
        else:
            dcgan = DCGAN(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size, output_size=FLAGS.output_size, c_dim=FLAGS.c_dim,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir, sample_dir=FLAGS.sample_dir)

        if FLAGS.is_train:
            dcgan.train(FLAGS)
        else:
            dcgan.sampling(FLAGS)

        if FLAGS.visualize:
            to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
                                          [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
                                          [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
                                          [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
                                          [dcgan.h4_w, dcgan.h4_b, None])

            # Below is codes for visualization
            OPTION = 2
            visualize(sess, dcgan, FLAGS, OPTION)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def main(_):
    pp.pprint(flags.FLAGS.__flags)
    sample_dir_ = os.path.join(FLAGS.sample_dir, FLAGS.name)
    checkpoint_dir_ = os.path.join(FLAGS.checkpoint_dir, FLAGS.name)
    log_dir_ = os.path.join(FLAGS.log_dir, FLAGS.name)
    if not os.path.exists(checkpoint_dir_):
        os.makedirs(checkpoint_dir_)
    if not os.path.exists(sample_dir_):
        os.makedirs(sample_dir_)
    if not os.path.exists(log_dir_):
        os.makedirs(log_dir_)

    with tf.Session() as sess:
        if FLAGS.dataset == 'mnist':
            dcgan = DCGAN(sess, config=FLAGS, batch_size=FLAGS.batch_size, output_size=28, c_dim=1,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=checkpoint_dir_, sample_dir=sample_dir_, log_dir=log_dir_)
        else:
            dcgan = DCGAN(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size, output_size=FLAGS.output_size, c_dim=FLAGS.c_dim,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir, sample_dir=FLAGS.sample_dir)

        if FLAGS.is_train:
            dcgan.train(FLAGS)
        else:
            dcgan.sampling(FLAGS)

        if FLAGS.visualize:
            to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
                                          [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
                                          [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
                                          [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
                                          [dcgan.h4_w, dcgan.h4_b, None])

            # Below is codes for visualization
            OPTION = 2
            visualize(sess, dcgan, FLAGS, OPTION)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def main(_):
    pp.pprint(flags.FLAGS.__flags)
    sample_dir_ = os.path.join(FLAGS.sample_dir, FLAGS.name)
    checkpoint_dir_ = os.path.join(FLAGS.checkpoint_dir, FLAGS.name)
    log_dir_ = os.path.join(FLAGS.log_dir, FLAGS.name)
    if not os.path.exists(checkpoint_dir_):
        os.makedirs(checkpoint_dir_)
    if not os.path.exists(sample_dir_):
        os.makedirs(sample_dir_)
    if not os.path.exists(log_dir_):
        os.makedirs(log_dir_)

    with tf.Session() as sess:
        if FLAGS.dataset == 'mnist':
            dcgan = DCGAN(sess, config=FLAGS, batch_size=FLAGS.batch_size, output_size=28, c_dim=1,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=checkpoint_dir_, sample_dir=sample_dir_, log_dir=log_dir_)
        else:
            dcgan = DCGAN(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size, output_size=FLAGS.output_size, c_dim=FLAGS.c_dim,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir, sample_dir=FLAGS.sample_dir)

        if FLAGS.is_train:
            dcgan.train(FLAGS)
        else:
            dcgan.sampling(FLAGS)
            #dcgan.load(FLAGS.checkpoint_dir)

        if FLAGS.visualize:
            to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
                                          [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
                                          [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
                                          [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
                                          [dcgan.h4_w, dcgan.h4_b, None])

            # Below is codes for visualization
            OPTION = 2
            visualize(sess, dcgan, FLAGS, OPTION)
项目:Mendelssohn    作者:diggerdu    | 项目源码 | 文件源码
def main(_):
    pp.pprint(flags.FLAGS.__flags)

    if not os.path.exists(FLAGS.checkpoint_dir):
        os.makedirs(FLAGS.checkpoint_dir)
    if not os.path.exists(FLAGS.sample_dir):
        os.makedirs(FLAGS.sample_dir)

    with tf.Session() as sess:
        dcgan = DCGAN(sess, image_size = FLAGS.image_size, output_size = FLAGS.output_size, batch_size=FLAGS.batch_size, sample_size = FLAGS.sample_size)

        if FLAGS.is_train:
            dcgan.train(FLAGS)
        else:
            dcgan.load(FLAGS.checkpoint_dir)

        if FLAGS.visualize:
            # to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
            #                               [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
            #                               [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
            #                               [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
            #                               [dcgan.h4_w, dcgan.h4_b, None])

            # Below is codes for visualization
            OPTION = 2
            visualize(sess, dcgan, FLAGS, OPTION)
项目:WaterGAN    作者:kskin    | 项目源码 | 文件源码
def main(_):
  pp.pprint(flags.FLAGS.__flags)

  if FLAGS.input_width is None:
    FLAGS.input_width = FLAGS.input_height
  if FLAGS.output_width is None:
    FLAGS.output_width = FLAGS.output_height

  if not os.path.exists(FLAGS.checkpoint_dir):
    os.makedirs(FLAGS.checkpoint_dir)
  if not os.path.exists(FLAGS.sample_dir):
    os.makedirs(FLAGS.sample_dir)

  run_config = tf.ConfigProto()
  run_config.gpu_options.allow_growth=True
  with tf.Session(config=run_config) as sess:
    wgan = WGAN(
      sess,
      input_width=FLAGS.input_width,
      input_height=FLAGS.input_height,
      input_water_width=FLAGS.input_water_width,
      input_water_height=FLAGS.input_water_height,
      output_width=FLAGS.output_width,
      output_height=FLAGS.output_height,
      batch_size=FLAGS.batch_size,
      c_dim=FLAGS.c_dim,
      max_depth = FLAGS.max_depth,
      save_epoch=FLAGS.save_epoch,
      water_dataset_name=FLAGS.water_dataset,
      air_dataset_name = FLAGS.air_dataset,
      depth_dataset_name = FLAGS.depth_dataset,
      input_fname_pattern=FLAGS.input_fname_pattern,
      is_crop=FLAGS.is_crop,
      checkpoint_dir=FLAGS.checkpoint_dir,
      results_dir = FLAGS.results_dir,
      sample_dir=FLAGS.sample_dir,
      num_samples = FLAGS.num_samples)

    if FLAGS.is_train:
      wgan.train(FLAGS)
    else:
      if not wgan.load(FLAGS.checkpoint_dir):
        raise Exception("[!] Train a model first, then run test mode")
      wgan.test(FLAGS)

    # to_json("./web/js/layers.js", [wgan.h0_w, wgan.h0_b, wgan.g_bn0],
    #                 [wgan.h1_w, wgan.h1_b, wgan.g_bn1],
    #                 [wgan.h2_w, wgan.h2_b, wgan.g_bn2],
    #                 [wgan.h3_w, wgan.h3_b, wgan.g_bn3],
    #                 [wgan.h4_w, wgan.h4_b, None])

    # Below is codes for visualization
    #OPTION = 1
    #visualize(sess, wgan, FLAGS, OPTION)
项目:WaterGAN    作者:kskin    | 项目源码 | 文件源码
def main(_):
  pp.pprint(flags.FLAGS.__flags)

  if FLAGS.input_width is None:
    FLAGS.input_width = FLAGS.input_height
  if FLAGS.output_width is None:
    FLAGS.output_width = FLAGS.output_height

  if not os.path.exists(FLAGS.checkpoint_dir):
    os.makedirs(FLAGS.checkpoint_dir)
  if not os.path.exists(FLAGS.sample_dir):
    os.makedirs(FLAGS.sample_dir)

  run_config = tf.ConfigProto()
  run_config.gpu_options.allow_growth=True
  with tf.Session(config=run_config) as sess:
    wgan = WGAN(
      sess,
      input_width=FLAGS.input_width,
      input_height=FLAGS.input_height,
      input_water_width=FLAGS.input_water_width,
      input_water_height=FLAGS.input_water_height,
      output_width=FLAGS.output_width,
      output_height=FLAGS.output_height,
      batch_size=FLAGS.batch_size,
      c_dim=FLAGS.c_dim,
      max_depth = FLAGS.max_depth,
      save_epoch=FLAGS.save_epoch,
      water_dataset_name=FLAGS.water_dataset,
      air_dataset_name = FLAGS.air_dataset,
      depth_dataset_name = FLAGS.depth_dataset,
      input_fname_pattern=FLAGS.input_fname_pattern,
      is_crop=FLAGS.is_crop,
      checkpoint_dir=FLAGS.checkpoint_dir,
      results_dir = FLAGS.results_dir,
      sample_dir=FLAGS.sample_dir,
      num_samples = FLAGS.num_samples)

    if FLAGS.is_train:
      wgan.train(FLAGS)
    else:
      if not wgan.load(FLAGS.checkpoint_dir):
        raise Exception("[!] Train a model first, then run test mode")
      wgan.test(FLAGS)

    # to_json("./web/js/layers.js", [wgan.h0_w, wgan.h0_b, wgan.g_bn0],
    #                 [wgan.h1_w, wgan.h1_b, wgan.g_bn1],
    #                 [wgan.h2_w, wgan.h2_b, wgan.g_bn2],
    #                 [wgan.h3_w, wgan.h3_b, wgan.g_bn3],
    #                 [wgan.h4_w, wgan.h4_b, None])

    # Below is codes for visualization
    #OPTION = 1
    #visualize(sess, wgan, FLAGS, OPTION)
项目:DeepLearning    作者:Wanwannodao    | 项目源码 | 文件源码
def train(self, config=None):
        #mnist = input_data.read_data_sets("/tmp/tensorflow/mnist/input_dat", one_hot=True)

        loader = Loader(config.data_dir, config.data, config.batch_size)

        loaded = False
        if not config.reset:
            loaded, global_step = self.restore(config.checkpoint_dir)
        if not loaded:
            tf.global_variables_initializer().run()
            global_step = 0

        d_losses = []
        g_losses = []
        steps = []
        gif = []
        for epoch in range(config.epoch):
            loader.reset()
            #for idx in range(config.step):
            for idx in range(loader.batch_num):
                #batch_X, _ = mnist.train.next_batch(config.batch_size)
                #batch_X = batch_X.reshape([-1]+self.in_dim)
                batch_X = np.asarray(loader.next_batch(), dtype=np.float32)
                #batch_X = (batch_X*255.-127.5)/127.5
                batch_X = (batch_X - 127.5)/127.5
                batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim])

                _, d_loss = self.sess.run([self.d_train_op, self.d_loss],
                              feed_dict={self.X: batch_X, self.z: batch_z})
                _, g_loss = self.sess.run([self.g_train_op, self.g_loss],
                              feed_dict={self.z: batch_z})
                d_losses.append(d_loss)
                g_losses.append(g_loss)
                steps.append(global_step)
                global_step += 1

            print(" [Epoch {}] d_loss:{}, g_loss:{}".format(epoch, d_loss, g_loss))
            batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim])
            imgs = self.sess.run(self.sampler, feed_dict={self.z: batch_z})
            gif.append(visualize(imgs, epoch, config.data))
            self.save("{}_{}".format(config.checkpoint_dir, config.data), global_step, model_name="dcgan")

        plot({'d_loss':d_losses, 'g_loss':g_losses}, steps, title="DCGAN loss ({})".format(config.data), x_label="Step", y_label="Loss")
        save_gif(gif, "gen_img_{}".format(config.data))
项目:easygen    作者:markriedl    | 项目源码 | 文件源码
def run(checkpoint_dir = 'checkpoints', batch_size = 64, input_height = 108, input_width = None, output_height = 64, output_width = None, dataset = 'celebA', input_fname_pattern = '*.jpg', output_dir = 'output', sample_dir = 'samples', crop=True):
  #pp.pprint(flags.FLAGS.__flags)

  if input_width is None:
    input_width = input_height
  if output_width is None:
    output_width = output_height

  #if not os.path.exists(checkpoint_dir):
  #  os.makedirs(checkpoint_dir)
  #if not os.path.exists(output_dir):
  #  os.makedirs(output_dir)

  #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
  run_config = tf.ConfigProto()
  run_config.gpu_options.allow_growth=True

  with tf.Session(config=run_config) as sess:
    dcgan = DCGAN(
        sess,
        input_width=input_width,
        input_height=input_height,
        output_width=output_width,
        output_height=output_height,
        batch_size=batch_size,
        sample_num=batch_size,
        dataset_name=dataset,
        input_fname_pattern=input_fname_pattern,
        crop=crop,
        checkpoint_dir=checkpoint_dir,
        sample_dir=sample_dir,
        output_dir=output_dir)

    show_all_variables()

    try:
      tf.global_variables_initializer().run()
    except:
      tf.initialize_all_variables().run()

    # Below is code for visualization
    visualize(sess, dcgan, batch_size = batch_size, input_height = input_height, input_width = input_width, output_dir = output_dir)