我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用utils.to_json()。
def main(_): pp.pprint(flags.FLAGS.__flags) if not os.path.exists(FLAGS.checkpoint_dir): os.makedirs(FLAGS.checkpoint_dir) if not os.path.exists(FLAGS.sample_dir): os.makedirs(FLAGS.sample_dir) with tf.Session() as sess: dcgan = DCGAN(sess, image_size = FLAGS.image_size, output_size = FLAGS.output_size, batch_size=FLAGS.batch_size, sample_size = FLAGS.sample_size) if FLAGS.is_train: dcgan.train(FLAGS) else: dcgan.load(FLAGS.checkpoint_dir) if FLAGS.visualize: # to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0], # [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1], # [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2], # [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3], # [dcgan.h4_w, dcgan.h4_b, None]) # Below is codes for visualization OPTION = 2 visualize(sess, dcgan, FLAGS, OPTION)
def toJSON(self): import utils return utils.to_json(self.toJSONDict())
def toJSON(self): return utils.to_json(self.toJSONDict())
def hash(self): s = utils.to_json(self.toJSONDict()) return utils.hash_b64(s)
def get_hash(self): return utils.hash_b64(utils.to_json(self.toJSONDict()))
def return_json(func): """ A decorator that serializes the output to JSON before returning to the web client. """ def convert_to_json(self, *args, **kwargs): return_val = func(self, *args, **kwargs) try: return render_json(utils.to_json(return_val)) except Exception, e: import logging logging.error("problem with serialization: " + str(return_val) + " / " + str(e)) raise e return update_wrapper(convert_to_json,func)
def main(_): pp.pprint(flags.FLAGS.__flags) if FLAGS.input_width is None: FLAGS.input_width = FLAGS.input_height if FLAGS.output_width is None: FLAGS.output_width = FLAGS.output_height if not os.path.exists(FLAGS.checkpoint_dir): os.makedirs(FLAGS.checkpoint_dir) if not os.path.exists(FLAGS.sample_dir): os.makedirs(FLAGS.sample_dir) run_config = tf.ConfigProto() run_config.gpu_options.allow_growth=True with tf.Session(config=run_config) as sess: wgan = WGAN( sess, input_width=FLAGS.input_width, input_height=FLAGS.input_height, input_water_width=FLAGS.input_water_width, input_water_height=FLAGS.input_water_height, output_width=FLAGS.output_width, output_height=FLAGS.output_height, batch_size=FLAGS.batch_size, c_dim=FLAGS.c_dim, max_depth = FLAGS.max_depth, save_epoch=FLAGS.save_epoch, water_dataset_name=FLAGS.water_dataset, air_dataset_name = FLAGS.air_dataset, depth_dataset_name = FLAGS.depth_dataset, input_fname_pattern=FLAGS.input_fname_pattern, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir, results_dir = FLAGS.results_dir, sample_dir=FLAGS.sample_dir, num_samples = FLAGS.num_samples) if FLAGS.is_train: wgan.train(FLAGS) else: if not wgan.load(FLAGS.checkpoint_dir): raise Exception("[!] Train a model first, then run test mode") wgan.test(FLAGS) # to_json("./web/js/layers.js", [wgan.h0_w, wgan.h0_b, wgan.g_bn0], # [wgan.h1_w, wgan.h1_b, wgan.g_bn1], # [wgan.h2_w, wgan.h2_b, wgan.g_bn2], # [wgan.h3_w, wgan.h3_b, wgan.g_bn3], # [wgan.h4_w, wgan.h4_b, None]) # Below is codes for visualization #OPTION = 1 #visualize(sess, wgan, FLAGS, OPTION)