Python utils 模块,load_params() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用utils.load_params()

项目:video_predict    作者:tencia    | 项目源码 | 文件源码
def deconvoluter(params_fn, specstr, shape):
    input_var = T.tensor4('input')
    decnet = build_deconv_net(input_var, shape=shape, specstr=specstr)
    u.load_params(decnet, params_fn)
    return theano.function([input_var], nn.layers.get_output(decnet))

# builds a CAE and returns functions to go from image space to the layer denoted by
# layersplit, and from that layer back to images. However, the second function only
# works correctly if layersplit='encode', due to the structure of the Lasagne layer
# implementation, so if we split on a different layer then it is necessary to
# build a separate function for going from conv-space to images.
项目:video_predict    作者:tencia    | 项目源码 | 文件源码
def encoder_decoder(paramsfile, specstr, channels=3, layersplit='encode', shape=(64,64),
        poolinv=False):
    inp = T.tensor4('inputs')
    w,h=shape
    build_fn = build_cae if poolinv else build_cae_nopoolinv
    network = build_fn(inp, shape=shape,channels=channels,specstr=specstr)
    u.load_params(network, paramsfile)
    laylist = nn.layers.get_all_layers(network)
    enc_layer_idx = next(i for i in xrange(len(laylist)) if laylist[i].name==layersplit)
    enc_layer = laylist[enc_layer_idx]
    return (lambda x: nn.layers.get_output(enc_layer, inputs=x,deterministic=True).eval(),
            lambda x: nn.layers.get_output(network,
                inputs={laylist[0]:np.zeros((x.shape[0],channels,w,h),
                    dtype=theano.config.floatX),
                    enc_layer:x}, deterministic=True).eval().reshape(-1,channels,w,h))
项目:diagnose-heart    作者:woshialex    | 项目源码 | 文件源码
def get_segmenter_function(params_loc, img_size, NCV=1, version=1,
        param_file_key = None):
    shape = (None, 1, img_size, img_size)
    input_var = T.tensor4('input')
    if NCV> 1:
        expr = 0
        params_files = filter(lambda s: 'fcn_v{}'.format(version) in s, os.listdir(params_loc))
        if param_file_key is not None:
            params_files = filter(lambda s: param_file_key in s, params_files)
        for pfn in params_files:
            net, _, output_det = build_fcn_segmenter(input_var, shape, version)
            u.load_params(net['output'], os.path.join(params_loc, pfn))
            cv = int(pfn.split('_')[-1][1]);
            if cv == NCV:
                expr = expr + output_det * NCV;
            else:
                expr = expr + output_det
            print 'loaded {}'.format(pfn)
        assert(len(params_files)==NCV+1);
        expr = expr / NCV /2;
        print 'loaded {} in ensemble'.format(len(params_files))
    else:
        net, _, output_det = build_fcn_segmenter(input_var, shape, version)
        u.load_params(net['output'], params_loc)
        expr = output_det
        print 'loaded indiv function {}'.format(params_loc)
    return theano.function([input_var], expr)
项目:diagnose-heart    作者:woshialex    | 项目源码 | 文件源码
def get_segmenter_function(params_loc, img_size, ensemble=False, version=2,
        param_file_key = '.npz', weight_full_params=0.33):
    shape = (None, 1, img_size, img_size)
    input_var = T.tensor4('input')
    if ensemble:
        expr = 0
        params_files = filter(lambda s: 'v{}'.format(version) in s, os.listdir(params_loc))
        if param_file_key is not None:
            params_files = filter(lambda s: param_file_key in s, params_files)
        full_params_indices = [i for i,a in enumerate(params_files) if 'f-1' in a]
        if len(full_params_indices) > 0:
            wt_norm = (1. - weight_full_params)/(len(params_files) - len(full_params_indices))
            wt_full = weight_full_params / len(full_params_indices)
            params_weights = [(wt_norm if i not in full_params_indices else wt_full) \
                    for i in xrange(len(params_files))]
        else:
            params_weights = [1./len(params_files)] * len(params_files)
        for pfn,w in zip(params_files, params_weights):
            net, _, output_det = build_fcn_segmenter(input_var, shape, version)
            u.load_params(net['output'], os.path.join(params_loc, pfn))
            expr = expr + w*output_det
            print 'loaded {} wt {}'.format(pfn, w)
        print 'loaded {} in ensemble'.format(len(params_files))
    else:
        net, _, output_det = build_fcn_segmenter(input_var, shape, version)
        u.load_params(net['output'], params_loc)
        expr = output_det
        print 'loaded indiv function {}'.format(params_loc)
    return theano.function([input_var], expr)
项目:ConversationalQA    作者:btjhjeon    | 项目源码 | 文件源码
def load_model(embed_map=None):
    """
    Load all model components + apply vocab expansion
    """
    # Load the worddict
    print 'Loading dictionary...'
    with open(path_to_dictionary, 'rb') as f:
        worddict = pkl.load(f)

    # Create inverted dictionary
    print 'Creating inverted dictionary...'
    word_idict = dict()
    for kk, vv in worddict.iteritems():
        word_idict[vv] = kk
    word_idict[0] = '<eos>'
    word_idict[1] = 'UNK'

    # Load model options
    print 'Loading model options...'
    with open('%s.pkl'%path_to_model, 'rb') as f:
        options = pkl.load(f)

    # Load parameters
    print 'Loading model parameters...'
    params = init_params(options)
    params = load_params(path_to_model, params)
    tparams = init_tparams(params)

    # Extractor functions
    print 'Compiling encoder...'
    trng = RandomStreams(1234)
    trng, x, x_mask, ctx, emb = build_encoder(tparams, options)
    f_enc = theano.function([x, x_mask], ctx, name='f_enc')
    f_emb = theano.function([x], emb, name='f_emb')
    trng, embedding, x_mask, ctxw2v = build_encoder_w2v(tparams, options)
    f_w2v = theano.function([embedding, x_mask], ctxw2v, name='f_w2v')

    # Load word2vec, if applicable
    if embed_map == None:
        print 'Loading word2vec embeddings...'
        embed_map = load_googlenews_vectors(path_to_word2vec)

    # Lookup table using vocab expansion trick
    print 'Creating word lookup tables...'
    table = lookup_table(options, embed_map, worddict, word_idict, f_emb)

    # Store everything we need in a dictionary
    print 'Packing up...'
    model = {}
    model['options'] = options
    model['table'] = table
    model['f_w2v'] = f_w2v

    return model
项目:ConversationalQA    作者:btjhjeon    | 项目源码 | 文件源码
def load_model():
    """
    Load a trained model for decoding
    """
    # Load the worddict
    print 'Loading dictionary...'
    with open(path_to_dictionary, 'rb') as f:
        worddict = pkl.load(f)

    # Create inverted dictionary
    print 'Creating inverted dictionary...'
    word_idict = dict()
    for kk, vv in worddict.iteritems():
        word_idict[vv] = kk
    word_idict[0] = '<eos>'
    word_idict[1] = 'UNK'

    # Load model options
    print 'Loading model options...'
    with open('%s.pkl'%path_to_model, 'rb') as f:
        options = pkl.load(f)

    # Load parameters
    print 'Loading model parameters...'
    params = init_params(options)
    params = load_params(path_to_model, params)
    tparams = init_tparams(params)

    # Sampler.
    trng = RandomStreams(1234)
    f_init, f_next = build_sampler(tparams, options, trng)

    # Pack everything up
    dec = dict()
    dec['options'] = options
    dec['trng'] = trng
    dec['worddict'] = worddict
    dec['word_idict'] = word_idict
    dec['tparams'] = tparams
    dec['f_init'] = f_init
    dec['f_next'] = f_next
    return dec
项目:hLSTMat    作者:zhaoluffy    | 项目源码 | 文件源码
def generate(model_options_file='model_options.pkl',
         model_file='model_best_so_far.npz'):
    from_dir = 'model_files/'
    print 'preparing reload'
    model_options = utils.load_pkl(from_dir+model_options_file)

    print 'Loading data'
    engine = data_engine.Movie2Caption('attention',
                                       model_options['dataset'],
                                       model_options['video_feature'],
                                       model_options['batch_size'],
                                       model_options['valid_batch_size'],
                                       model_options['maxlen'],
                                       model_options['n_words'],
                                       model_options['K'],
                                       model_options['OutOf'])

    feat = numpy.load('datas/vid1715.npy')
    ctx = engine.get_sub_frames(feat)
    ctx_mask = engine.get_ctx_mask(ctx)

    print 'init params'
    t0 = time.time()
    model = Model()
    params = model.init_params(model_options)

    model_saved = from_dir + model_file
    assert os.path.isfile(model_saved)
    print "Reloading model params..."
    params = utils.load_params(model_saved, params)
    tparams = utils.init_tparams(params)
    print tparams.keys

    print 'buliding sampler'
    use_noise = theano.shared(numpy.float32(0.))
    use_noise.set_value(0.)
    trng = RandomStreams(1234)
    f_init, f_next = model.build_sampler(tparams, model_options, use_noise, trng)

    print 'start generate...'
    g_t0 = time.time()
    sample, sample_score, _, _ = model.gen_sample(None, f_init, f_next, ctx, ctx_mask, model_options,
                                                  None, 5, maxlen=model_options['maxlen'])
    print sample
    # best_one = numpy.argmin(sample_score)
    # sample = sample[best_one]
    for s in sample:
        for kk, ss in enumerate([s]):
            for vv in ss:
                if vv == 0:
                    break
                if vv in engine.word_idict:
                    print engine.word_idict[vv],
                else:
                    print 'UNK',
        print