我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用utils.preprocess()。
def extract_features(tweet, combinedKeywords, pronDict): preprocessed = ut.preprocess(tweet) # ignore empty preprocessed tweets or retweets if len(preprocessed) == 0 or ut.is_retweet(tweet): return [] else: sentLength = la.get_sentence_length(preprocessed) exclMarks = la.get_exclamation_marks(tweet) gradeLvl = get_flesch_grade_level(preprocessed, pronDict) keyCount = get_keywords_count(preprocessed, combinedKeywords) # ensure same order everytime keys = sorted(list(keyCount.keys())) # put all features together features = [ sentLength, exclMarks, gradeLvl ] for key in keys: features.append(keyCount.get(key)) # return array return features
def __init__(self, content_path, style_path): # 4D representations of the given content and style images self.content_image = utils.preprocess(plt.imread(content_path))[np.newaxis] self.style_image = utils.preprocess(plt.imread(style_path))[np.newaxis] # The session and graph used for evaluating the content and style of the # given content and style images self.evaluation_g = tf.Graph() self.evaluation_sess = tf.Session(graph=self.evaluation_g) # The outputs (:0) of the intermediate layers of the VGG16 model used to represent the # content and style of an input to the model self.content_layer = config["content_layer"] self.style_layers = config["style_layers"] with self.evaluation_g.as_default(): # Import the VGG16 ImageNet predictor model graph into the evaluation_g member variable tf.import_graph_def(utils.get_vgg_model(), name="vgg") # The input to the VGG16 predictor model is the output (:0) of the first operation of the graph self.input_tensor = [op.name for op in self.evaluation_g.get_operations()][0] + ":0"
def std(image): return utils.preprocess.per_image_standardization(image)
def detect(sess, model, names, image, path): preprocess = eval(args.preprocess) _, height, width, _ = image.get_shape().as_list() _image = read_image(path) image_original = np.array(np.uint8(_image)) if len(image_original.shape) == 2: image_original = np.repeat(np.expand_dims(image_original, -1), 3, 2) image_height, image_width, _ = image_original.shape image_std = preprocess(np.array(np.uint8(_image.resize((width, height)))).astype(np.float32)) feed_dict = {image: np.expand_dims(image_std, 0)} tensors = [model.conf, model.xy_min, model.xy_max] conf, xy_min, xy_max = sess.run([tf.check_numerics(t, t.op.name) for t in tensors], feed_dict=feed_dict) boxes = utils.postprocess.non_max_suppress(conf[0], xy_min[0], xy_max[0], args.threshold, args.threshold_iou) scale = [image_width / model.cell_width, image_height / model.cell_height] fig = plt.figure() ax = fig.gca() ax.imshow(image_original) colors = [prop['color'] for _, prop in zip(names, itertools.cycle(plt.rcParams['axes.prop_cycle']))] cnt = 0 for _conf, _xy_min, _xy_max in boxes: index = np.argmax(_conf) if _conf[index] > args.threshold: wh = _xy_max - _xy_min _xy_min = _xy_min * scale _wh = wh * scale linewidth = min(_conf[index] * 10, 3) ax.add_patch(patches.Rectangle(_xy_min, _wh[0], _wh[1], linewidth=linewidth, edgecolor=colors[index], facecolor='none')) ax.annotate(names[index] + ' (%.1f%%)' % (_conf[index] * 100), _xy_min, color=colors[index]) cnt += 1 fig.canvas.set_window_title('%d objects detected' % cnt) ax.set_xticks([]) ax.set_yticks([]) return fig
def make_args(): parser = argparse.ArgumentParser() parser.add_argument('path', help='input image path') parser.add_argument('-c', '--config', nargs='+', default=['config.ini'], help='config file') parser.add_argument('-p', '--preprocess', default='std', help='the preprocess function') parser.add_argument('-t', '--threshold', type=float, default=0.3) parser.add_argument('--threshold_iou', type=float, default=0.4, help='IoU threshold') parser.add_argument('-e', '--exts', nargs='+', default=['.jpg', '.png']) parser.add_argument('--level', default='info', help='logging level') return parser.parse_args()
def telemetry(sid, data): if data: # The current steering angle of the car steering_angle = float(data["steering_angle"]) # The current throttle of the car, how hard to push peddle throttle = float(data["throttle"]) # The current speed of the car speed = float(data["speed"]) # The current image from the center camera of the car image = Image.open(BytesIO(base64.b64decode(data["image"]))) try: image = np.asarray(image) # from PIL image to numpy array image = utils.preprocess(image) # apply the preprocessing image = np.array([image]) # the model expects 4D array # predict the steering angle for the image steering_angle = float(model.predict(image, batch_size=1)) # lower the throttle as the speed increases # if the speed is above the current speed limit, we are on a downhill. # make sure we slow down first and then go back to the original max speed. global speed_limit if speed > speed_limit: speed_limit = MIN_SPEED # slow down else: speed_limit = MAX_SPEED throttle = 1.0 - steering_angle**2 - (speed/speed_limit)**2 print('{} {} {}'.format(steering_angle, throttle, speed)) send_control(steering_angle, throttle) except Exception as e: print(e) # save frame if args.image_folder != '': timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3] image_filename = os.path.join(args.image_folder, timestamp) image.save('{}.jpg'.format(image_filename)) else: sio.emit('manual', data={}, skip_sid=True)
def split_data(X, y, split_ratio=0.6): """ Split data into training and testing. :param X: X :param y: y :param split_ratio: split ratio for train and test data """ #split = int(X.shape[0] * split_ratio) #the input dimensions can be control through modifing the second axis. X_train= X[:, 1:4, :, :] y_train=y """ Load validation data from .npy files. """ X_test_R = np.load('data/X_validation_ALL.npy') X_test_R = X_test_R.astype(np.float32) X_test_R /= 255 X_test_R=preprocess(X_test_R) X_test = X_test_R[:, 1:4, :, :] #y_test = int(y_test_R*0.2) y_test_R = np.load('data/y_validation.npy') y_test=y_test_R return X_train, y_train, X_test, y_test
def telemetry(sid, data): if data: # The current steering angle of the car steering_angle = float(data["steering_angle"]) # The current throttle of the car throttle = float(data["throttle"]) # The current speed of the car speed = float(data["speed"]) # The current image from the center camera of the car image = Image.open(BytesIO(base64.b64decode(data["image"]))) try: image = np.asarray(image) # from PIL image to numpy array image = utils.preprocess(image) # apply the preprocessing image = np.array([image]) # the model expects 4D array # predict the steering angle for the image steering_angle = float(model.predict(image, batch_size=1)) # lower the throttle as the speed increases # if the speed is above the current speed limit, we are on a downhill. # make sure we slow down first and then go back to the original max speed. global speed_limit if speed > speed_limit: speed_limit = MIN_SPEED # slow down else: speed_limit = MAX_SPEED throttle = 1.0 - steering_angle**2 - (speed/speed_limit)**2 print('{} {} {}'.format(steering_angle, throttle, speed)) send_control(steering_angle, throttle) except Exception as e: print(e) # save frame if args.image_folder != '': timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3] image_filename = os.path.join(args.image_folder, timestamp) image.save('{}.jpg'.format(image_filename)) else: # NOTE: DON'T EDIT THIS. sio.emit('manual', data={}, skip_sid=True)
def test_preprocessing(self): s = ( "???? >:( xd <3 :'D http://t.co/rlqo5xfbul www.google.com e-mail" " three-level-building I'm wouldn't @trump #bad" " 1.2 Hi, my name is: Jon!? Next sentence." ) self.assertEqual( to_string(ut.preprocess(s)), ( "e mail three level building i m wouldn t" " trump bad 12 hi my name is jon next sentence" ) )
def get_linguistic_analysis(user, fromFile): tweets = [] if fromFile: tweets = get_tweets_from_file(user) else: tweets = get_max_amount_tweets(user) tweets = utils.remove_retweets(tweets) norm = [ utils.preprocess(tweet) for tweet in tweets if len(utils.preprocess(tweet)) if not utils.is_retweet(tweet) ] print("\nLinguistic Analysis of ", user, "'s tweets\n") print( "Average word length: ", get_average_word_characters(norm), " characters" ) print("Average syllables per word: ", get_average_word_syllables(norm)) print( "Average sentence length: ", get_average_sentence_length(norm), " words" ) print("Average tweet length: ", get_average_tweet_length(norm), " words") print( "Average question marks per tweet: ", get_average_question_marks(tweets) ) print( "Average exclamation marks per tweet: ", get_average_exclamation_marks(tweets) ) print("Average flesch grade level: ", get_average_flesch_grade_level(norm)) print("\nMost frequent 25 keywords:") for tag,count in get_most_frequent_keywords(norm): print("{}: {}".format(tag, count))
def get_combined_keywords(tweets1, tweets2): # preprocess tweets preprocTweets1 = [ ut.preprocess(tweet) for tweet in tweets1 if len(ut.preprocess(tweet)) ] preprocTweets2 = [ ut.preprocess(tweet) for tweet in tweets2 if len(ut.preprocess(tweet)) ] # get combined list of top 25 most used keywords keywords1 = la.get_most_frequent_keywords(preprocTweets1) keywords2 = la.get_most_frequent_keywords(preprocTweets2) # get rid of tuples for i,tuple in enumerate(keywords1): keywords1[i] = tuple[0] for i,tuple in enumerate(keywords2): keywords2[i] = tuple[0] keywords1 = set(keywords1) keywords2 = set(keywords2) # combined keywords combinedKeywords = keywords1.union(keywords2) # return dictionary for counting keywords return {keyword:0 for keyword in combinedKeywords}