我们从Python开源项目中,提取了以下2个代码示例,用于说明如何使用utils.evaluate()。
def load_apilog(self, log_fname, limit): with open(log_fname, 'rb') as f: data = f.read().split('\n')[:-1] if len(data) %2 !=0: data = data[:-1] idx = 0 apilogs = [] while idx < len(data) and idx < limit*2: if data[idx][:2] == 'IN': il = utils.evaluate(data[idx][2:]) else: utils.error('load_apilog: parse IN error') if data[idx+1][:3] == 'OUT' : ol = utils.evaluate(data[idx+1][3:]) else: utils.error('load_apilog: parse OUT error') apilog = log.ApiLog(self.apis[il[0]], il, ol) apilogs.append(apilog) idx+=2 return apilogs
def fit_evaluate(X_train, X_test, y_train, y_test, pipeline, n_min=10000): pipeline_nm = utils.pipeline_name(pipeline) print(pipeline_nm) # Fit model start_time = time.perf_counter() pipeline.fit(X_train, y_train) end_time = time.perf_counter() print('Time elapsed to fit: {:.1f}s'.format(end_time - start_time)) # Evaluate model start_time = time.perf_counter() utils.evaluate(X_train, X_test, y_train, y_test, pipeline) end_time = time.perf_counter() print('Time elapsed to evaluate: {:.1f}s'.format(end_time - start_time)) # train_exponent = int(math.log10(len(X_train))) # train_sample_n = int(math.pow(10, max(train_exponent - 2, 2))) # train_sample_n = max(train_sample_n, min(n_min, len(X_train))) train_sample_n = 10000 X_sample_train = X_train.sample(n=train_sample_n) y_sample_train = y_train.reindex(X_sample_train.index) test_exponent = int(math.log10(len(X_test))) test_sample_n = int(math.pow(10, max(test_exponent - 2, 2))) test_sample_n = max(test_sample_n, min(n_min, len(X_test))) X_sample_test = X_test.sample(n=test_sample_n) y_sample_test = y_test.reindex(X_sample_test.index) # Visually inspect residuals for goodness of fitness res_fig = utils.plot_residuals(X_sample_train, X_sample_test, y_sample_train, y_sample_test, pipeline) res_fmt = 'output/residual_{}.png' res_fig.savefig(res_fmt.format(pipeline_nm), dpi=200) # Learning curve start_time = time.perf_counter() learn_fig = utils.plot_learning_curve([pipeline], X_sample_train, y_sample_train) lc_fmt = 'output/learning_curve_{}.png' learn_fig.savefig(lc_fmt.format(pipeline_nm), dpi=200) end_time = time.perf_counter() print('Time elapsed for learning curves: {:.1f}s'.format(end_time - start_time)) # Validation curve # start_time = time.perf_counter() # val_fig = utils.plot_validation_curve([pipeline], # X_train, # y_train, # n_jobs=1) # vc_fmt = 'output/validation_curve_{}.png' # val_fig.savefig(vc_fmt.format(pipeline_nm), dpi=200) # end_time = time.perf_counter() # print('Time elapsed for validation curves: {:.1f}s'.format(end_time - start_time))